JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Bacterial Cellulose Spheres that Encapsulate Solid Materials

Published: February 26th, 2021



1Department of Environmental Engineering, Montana Technological University, 2Department of Petroleum Engineering, Montana Technological University, 3Department of Metallurgical & Materials Engineering, Montana Technological University, 4Department of Mechanical Engineering, Montana Technological University

This protocol presents an easy, inexpensive method of forming bacterial cellulose (BC) spheres. This biomaterial can function as an encapsulation medium for solid materials, including biochar, polymer spheres, and mine waste.

Bacterial cellulose (BC) spheres have been increasingly researched since the popularization of BC as a novel material. This protocol presents an affordable and simple method for BC sphere production. In addition to producing these spheres, an encapsulation method for solid particles has also been identified. To produce BC spheres, water, black tea, sugar, vinegar, and bacterial culture are combined in a baffled flask and the contents are agitated. After determining the proper culture conditions for BC sphere formation, their ability to encapsulate solid particles was tested using biochar, polymer beads, and mine waste. Spheres were characterized using ImageJ software and thermal gravimetric analysis (TGA). Results indicate that spheres with 7.5 mm diameters can be made in 7 days. Adding various particles increases the average size range of the BC capsules. The spheres encapsulated 10 - 20% of their dry mass. This method shows low-cost sphere production and encapsulation that is possible with easily obtainable materials. BC spheres may be used in the future as a contaminant removal aid, controlled release fertilizer coating, or soil amendment.

Bacterial cellulose (BC) has been noted for its potential industry use due to its mechanical strength, high purity and crystallinity, water retention abilities, and intricate fiber structure1,2,3,4. These characteristics make BC a favorable biomaterial for a variety of applications, including biomedical, food processing, and environmental remediation uses1. Formation of a BC film can be done with single organism cultures or mixed cultures like those used for kombucha5, a fermented tea beverage.....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Creation and maintenance of bacterial cellulose starter culture

  1. Obtain a starter culture of bacterial cellulose, approximately 50 g, in the form of a SCOBY. It can be purchased commercially (e.g., from Cultures for Health). Place the SCOBY into a 1 L beaker, covered with a paper towel.
  2. Boil 700 mL of deionized water, transfer it to a separate vessel from the one containing the SCOBY, and add 85 g of sucrose.
  3. Once the sucrose has dissolved, add 2 bags of black tea (4.87 g). Steep the tea.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

BC spheres have the fastest growth rate during the first 48 h of culture (Figure 2). Figure 2 also shows how the spheres tend to reach a maximum average size and then remain constant. In this experiment, the spheres reached an average diameter of 7.5 ± 0.2 mm. Although the BC spheres never completely deteriorate within the 10 day growth period, they did start to form tendrils that extend off the main body of the sphere around the eighth day. This can be see.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol outlines BC sphere production and encapsulation methods that are easy to conduct and cost effective. Through various adjustments to the original protocol, an adequate process has been identified. Critical steps must be followed to ensure viable spheres. All the ingredients involved in BC formation play a key role in the health and durability of the spheres. The sucrose feeds organisms, the tea provides nitrogen, and the vinegar lowers the pH to optimal conditions to prevent undesired contaminants

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work is a continuation of a Montana Tech Research Assistant Mentorship Program project by Adolfo Martinez, Catherine Mulholland, Tyler Somerville, and Laurel Bitterman. Research was sponsored by the National Science Foundation under Grant No. OIA-1757351 and the Combat Capabilities Development Command Army Research Laboratory (Cooperative Agreement Number W911NF-15-2-0020). Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Army Research Lab. We would also like to thank Amy Kuenzi, Lee Richards, Katelyn Alley, Chris Gammon....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
100 mL graduated cylinder
1000 mL beaker
25 mL graduated cylinder
250 mL Erlenmeyer baffled flask Chemglass CLS-2040-02
500 mL beaker
Biochar Ponderosa pine heat treated under argon gas, heated at 15 °C per minute to 800 °C
Black tea
Deionized water
Distilled white vinegar
Elastic band
Microbial starter culture Cultures for Health
Mine waste Collected from Butte, MT: 46.001978,-112.582465. Mine waste contains soil and metals originating from past copper mining. Mn, Si, Ca, Al, and Fe were the five most prevalent elements measured in the mine waste through x-ray diffraction.
Mortar and pestle
Orbital shaker Used various brands
Paper towel
Polystyrene microbeads Polybead 17138 3 micron diameter
Stir rod
Tea kettle
TGA TA Instruments TA Q500 400 °C/min to 800 °C, 100 mL/min N2
XRF Analyzer ThermoFisher Scientific 10131166

  1. Mohainin Mohammad, S., Abd Rahman, N., Sahaid Khalil, M., Rozaimah Sheikh Abdullah, S. An Overview of Biocellulose Production Using Acetobacter xylinum Culture. Advances in Biological Research. 8 (6), 307-313 (2014).
  2. Dufresne, A. Bacterial cellulose. Nanocellulose. , 125-146 (2017).
  3. Czaja, W., Romanovicz, D., Brown, R. M. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. 11 (3-4), 403-411 (2004).
  4. Hu, Y., Catchmark, J. M. Formation and characterization of spherelike bacterial cellulose particles produced by acetobacter xylinum JCM 9730 strain. Biomacromolecules. 11 (7), 1727-1734 (2010).
  5. Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., Bhat, R. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (kombucha). International Food Research Journal. 19 (1), 153-158 (2012).
  6. Toyosaki, H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T., Yoshinaga, F. Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture. Bioscience, Biotechnology, and Biochemistry. 59 (8), 1498-1502 (1995).
  7. Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. Utilization of bacterial cellulose in food. Food Hydrocolloids. 35, 539-545 (2014).
  8. Holland, M. C., Eggensperger, C. G., Giagnorio, M., Schiffman, J. D., Tiraferri, A., Zodrow, K. R. Facile Postprocessing Alters the Permeability and Selectivity of Microbial Cellulose Ultrafiltration Membranes. Environmental Science and Technology. 54 (20), 13249-13256 (2020).
  9. Le Hoang, S., Vu, C. M., Pham, L. T., Choi, H. J. Preparation and physical characteristics of epoxy resin/ bacterial cellulose biocomposites. Polymer Bulletin. 75 (6), 2607-2625 (2018).
  10. Vu, C. M., Nguyen, D. D., Sinh, L. H., Pham, T. D., Pham, L. T., Choi, H. J. Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics. Polymer Testing. 61, 150-161 (2017).
  11. Pavaloiu, R. D., Stoica, A., Stroescu, M., Dobre, T. Controlled release of amoxicillin from bacterial cellulose membranes. Central European Journal of Chemistry. 12 (9), 962-967 (2014).
  12. Trovatti, E., et al. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules. 12 (11), 4162-4168 (2011).
  13. Trovatti, E., et al. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. International Journal of Pharmaceutics. 435 (1), 83-87 (2012).
  14. Shaviv, A., Mikkelsen, R. L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation - A review. Fertilizer Research. 35 (1-2), 1-12 (1993).
  15. Eggensperger, C. G., et al. Sustainable living filtration membranes. Environmental Science and Technology Letters. 7 (3), 213-218 (2020).
  16. Schröpfer, S. B., et al. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polimeros. 25 (2), 154-160 (2015).
  17. Orts, W. J., Glenn, G. M. Reducing soil erosion losses with small applications of biopolymers. ACS Symposium Series. 723, 235-247 (1999).
  18. Mohite, B. V., Patil, S. V. A novel biomaterial: Bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry. 61 (2), 101-110 (2014).
  19. Mikkelsen, R. L. Using hydrophilic polymers to control nutrient release. Fertilizer Research. 38 (1), 53-59 (1994).
  20. Du, C. W., Zhou, J. M., Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. Journal of Polymers and the Environment. 14 (3), 223-230 (2006).
  21. Serafica, G., Mormino, R., Bungay, H. Inclusion of solid particles in bacterial cellulose. Applied Microbiology and Biotechnology. 58 (6), 756-760 (2002).
  22. Tomaszewska, M., Jarosiewicz, A. Use of polysulfone in controlled-release NPK fertilizer formulations. Journal of Agricultural and Food Chemistry. 50 (16), 4634-4639 (2002).
  23. González, M. E., et al. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment. 505, 446-453 (2015).
  24. Shavit, U., Shaviv, A., Shalit, G., Zaslavsky, D. Release characteristics of a new controlled release fertilizer. Journal of Controlled Release. 43 (2-3), 131-138 (1997).
  25. Kolakovic, R., Laaksonen, T., Peltonen, L., Laukkanen, A., Hirvonen, J. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. International Journal of Pharmaceutics. 430 (1-2), 47-55 (2012).
  26. Zaharia, A., et al. Bacterial cellulose-poly(acrylic acid-: Co-N, N ′-methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Advances. 8 (32), 17635-17644 (2018).
  27. Peterson, J. D., Vyazovkin, S., Wight, C. A. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromolecular Chemistry and Physics. 202 (6), 775-784 (2001).
  28. Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., Bhat, R. Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal. 19 (1), 109-117 (2012).
  29. Zhu, H., Jia, S., Yang, H., Jia, Y., Yan, L., Li, J. Preparation and application of bacterial cellulose sphere: A novel biomaterial. Biotechnology and Biotechnological Equipment. 25 (1), 2233-2236 (2011).
  30. Nguyen, V. T., Flanagan, B., Gidley, M. J., Dykes, G. A. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiology. 57 (5), 449-453 (2008).
  31. Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., Sarubbo, L. A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology. 8, 1-12 (2017).
  32. Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose. 5 (3), 187-200 (1998).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved