A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol presents an easy, inexpensive method of forming bacterial cellulose (BC) spheres. This biomaterial can function as an encapsulation medium for solid materials, including biochar, polymer spheres, and mine waste.
Bacterial cellulose (BC) spheres have been increasingly researched since the popularization of BC as a novel material. This protocol presents an affordable and simple method for BC sphere production. In addition to producing these spheres, an encapsulation method for solid particles has also been identified. To produce BC spheres, water, black tea, sugar, vinegar, and bacterial culture are combined in a baffled flask and the contents are agitated. After determining the proper culture conditions for BC sphere formation, their ability to encapsulate solid particles was tested using biochar, polymer beads, and mine waste. Spheres were characterized using ImageJ software and thermal gravimetric analysis (TGA). Results indicate that spheres with 7.5 mm diameters can be made in 7 days. Adding various particles increases the average size range of the BC capsules. The spheres encapsulated 10 - 20% of their dry mass. This method shows low-cost sphere production and encapsulation that is possible with easily obtainable materials. BC spheres may be used in the future as a contaminant removal aid, controlled release fertilizer coating, or soil amendment.
Bacterial cellulose (BC) has been noted for its potential industry use due to its mechanical strength, high purity and crystallinity, water retention abilities, and intricate fiber structure1,2,3,4. These characteristics make BC a favorable biomaterial for a variety of applications, including biomedical, food processing, and environmental remediation uses1. Formation of a BC film can be done with single organism cultures or mixed cultures like those used for kombucha5, a fermented tea beverage.....
1. Creation and maintenance of bacterial cellulose starter culture
BC spheres have the fastest growth rate during the first 48 h of culture (Figure 2). Figure 2 also shows how the spheres tend to reach a maximum average size and then remain constant. In this experiment, the spheres reached an average diameter of 7.5 ± 0.2 mm. Although the BC spheres never completely deteriorate within the 10 day growth period, they did start to form tendrils that extend off the main body of the sphere around the eighth day. This can be see.......
This protocol outlines BC sphere production and encapsulation methods that are easy to conduct and cost effective. Through various adjustments to the original protocol, an adequate process has been identified. Critical steps must be followed to ensure viable spheres. All the ingredients involved in BC formation play a key role in the health and durability of the spheres. The sucrose feeds organisms, the tea provides nitrogen, and the vinegar lowers the pH to optimal conditions to prevent undesired contaminants
The authors have nothing to disclose.
This work is a continuation of a Montana Tech Research Assistant Mentorship Program project by Adolfo Martinez, Catherine Mulholland, Tyler Somerville, and Laurel Bitterman. Research was sponsored by the National Science Foundation under Grant No. OIA-1757351 and the Combat Capabilities Development Command Army Research Laboratory (Cooperative Agreement Number W911NF-15-2-0020). Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Army Research Lab. We would also like to thank Amy Kuenzi, Lee Richards, Katelyn Alley, Chris Gammon....
Name | Company | Catalog Number | Comments |
100 mL graduated cylinder | |||
1000 mL beaker | |||
25 mL graduated cylinder | |||
250 mL Erlenmeyer baffled flask | Chemglass | CLS-2040-02 | |
500 mL beaker | |||
Balance | |||
Biochar | Ponderosa pine heat treated under argon gas, heated at 15 °C per minute to 800 °C | ||
Black tea | |||
Deionized water | |||
Distilled white vinegar | |||
Elastic band | |||
Microbial starter culture | Cultures for Health | ||
Mine waste | Collected from Butte, MT: 46.001978,-112.582465. Mine waste contains soil and metals originating from past copper mining. Mn, Si, Ca, Al, and Fe were the five most prevalent elements measured in the mine waste through x-ray diffraction. | ||
Mortar and pestle | |||
Orbital shaker | Used various brands | ||
Paper towel | |||
Polystyrene microbeads | Polybead | 17138 | 3 micron diameter |
Stir rod | |||
Sucrose | |||
Tea kettle | |||
TGA | TA Instruments | TA Q500 | 400 °C/min to 800 °C, 100 mL/min N2 |
Thermometer | |||
XRF Analyzer | ThermoFisher Scientific | 10131166 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved