JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Behavior

Multimedia Battery for Assessment of Cognitive and Basic Skills in Mathematics (BM-PROMA)

Published: August 28th, 2021

DOI:

10.3791/62288

1Faculty of Psychology and Speech Therapy, Universidad de La Laguna, 2Faculty of Education, Universidad Católica del Maule
* These authors contributed equally

BM-PROMA is a valid and reliable multimedia diagnostic tool that can provide a complete cognitive profile of children with mathematical learning disabilities.

Learning mathematics is a complex process that requires the development of multiple domain-general and domain-specific skills. It is therefore not unexpected that many children struggle to stay at grade level, and this becomes especially difficult when several abilities from both domains are impaired, as in the case of mathematical learning disabilities (MLD). Surprisingly, although MLD is one of the most common neurodevelopmental disorders affecting schoolchildren, most of the diagnostic instruments available do not include assessment of domain-general and domain-specific skills. Furthermore, very few are computerized. To the best of our knowledge, there is no tool with these features for Spanish-speaking children. The purpose of this study was to describe the protocol for the diagnosis of Spanish MLD children using the BM-PROMA multimedia battery. BM-PROMA facilitates the evaluation of both skill domains, and the 12 tasks included for this purpose are empirically evidence-based. The strong internal consistency of BM-PROMA and its multidimensional internal structure are demonstrated. BM-PROMA proves to be an appropriate tool for diagnosing children with MLD during primary education. It provides a broad cognitive profile for the child, which will be relevant not only for diagnosis but also for individualized instructional planning.

One of the crucial objectives of primary education is the acquisition of mathematical skills. This knowledge is highly relevant, as we all use mathematics in our everyday lives, for example, to calculate change given at the supermarket1,2. As such, the consequences of poor mathematical performance go beyond the academic. At the social level, a strong prevalence of poor mathematical performance within the population constitutes a cost to society. There is evidence that improvement of poor numerical skills in the population leads to significant savings for a country3. There are also negat....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol was conducted in accordance with the guidelines provided by the Comité de Ética de la Investigación y Bienestar Animal (Research Ethics and Animal Welfare Committee, CEIBA), Universidad de La Laguna.

NOTE: The Batería multimedia para la evaluación de habilidades cognitivas y básicas en matemáticas [Multimedia Battery for Assessment of Cognitive and Basic Skills in Mathematics (BM-PROMA)]61 was developed .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In order to test the utility and effectiveness of this diagnostic tool, its psychometric properties were analyzed in a large-scale sample. A total of 933 Spanish primary school students (boys = 508, girls = 425; Mage = 10 years, SD = 1.36) from grade 2 to grade 6 (grade 2, N = 169 [89 boys]; grade 3, N = 170 [89 boys]; grade 4, N = 187 [106 boys]; grade 5, N = 203 [113 boys]; grade 6, N= 204 [110 boys]) participated in the study. The children were .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Children with MLD are at risk not only of academic failure but also of psycho-emotional and health disorders8,9 and, later on, of employment deprivation4,5. Thus, it is crucial to diagnose MLD promptly in order to provide the educational support that these children need. However, diagnosing MLD is complex due to the multiple domain-specific and domain-general skill deficits that underlie the disorder

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We gratefully acknowledge the support of the Spanish government through its Plan Nacional I+D+i (R+D+i National Research Plan, Spanish Ministry of Economy and Competitiveness), project ref: PET2008_0225, with the second author as principal investigator; and CONICYT-Chile [FONDECYT REGULAR Nº 1191589], with the first author as principal investigator. We also thank the Unidad de Audiovisuales ULL team for their participation in the production of the video.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Multimedia Battery for Assessment of Cognitive and Basic Skills in Maths Universidad de La Laguna Pending assignment BM-PROMA

  1. Henik, A., Gliksman, Y., Kallai, A., Leibovich, T. Size Perception and the Foundation of Numerical Processing. Current Directions in Psychological Science. 26 (1), 45-51 (2017).
  2. Henik, A., Rubinsten, O., Ashkenazi, S. The "where" and "what" in developmental dyscalculia. Clinical Neuropsychologist. 25 (6), 989-1008 (2011).
  3. Ghisi, M., Bottesi, G., Re, A. M., Cerea, S., Mammarella, I. C. Socioemotional features and resilience in Italian university students with and without dyslexia. Frontiers in Psychology. 7, 1-9 (2016).
  4. Parsons, S., Bynner, J. Numeracy and employment. Education + Training. 39 (2), 43-51 (1997).
  5. Sideridis, G. D. International Approaches to Learning Disabilities: More Alike or More Different. Learning Disabilities Research & Practice. 22 (3), 210-215 (2007).
  6. Duncan, G. J., et al. School Readiness and Later Achievement. Developmental Psychology. 43 (6), 1428-1446 (2007).
  7. Wu, S. S., Barth, M., Amin, H., Malcarne, V., Menon, V. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement. Frontiers in Psychology. 3, 162 (2012).
  8. Reyna, V. F., Brainerd, C. J. The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making. Learning and Individual Differences. 17 (2), 147-159 (2007).
  9. Geary, D. C., Hoard, M. K., Nugent, L., Bailey, D. H. Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of Educational Psychology. 104 (1), 206-223 (2012).
  10. Kaufmann, L., et al. Dyscalculia from a developmental and differential perspective. Frontiers in Psychology. 4, 516 (2013).
  11. Wong, T. T. Y., Chan, W. W. L. Identifying children with persistent low math achievement: The role of number-magnitude mapping and symbolic numerical processing. Learning and Instruction. 60, 29-40 (2019).
  12. Haberstroh, S., Schulte-Körne, G. Diagnostik und Behandlung der Rechenstörung. Deutsches Arzteblatt International. 116 (7), 107-114 (2019).
  13. Kaufmann, L., von Aster, M. The diagnosis and management of dyscalculia. Deutsches Ärzteblatt international. 109 (45), 767-777 (2012).
  14. Murphy, M. M., Mazzocco, M. M., Hanich, L. B., Early, M. C. Children With Mathematics Learning Disability (MLD) Vary as a Function of the Cutoff Criterion Used to Define MLD. Journal of learning disabilities. 40 (5), 458-478 (2007).
  15. Ramaa, S., Gowramma, I. P. A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia. 8 (2), 67-85 (2002).
  16. Dirks, E., Spyer, G., Van Lieshout, E. C. D. M., De Sonneville, L. Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities. 41 (5), 460-473 (2008).
  17. Mazzocco, M. M. M., Myers, G. F. Complexities in Identifying and Defining Mathematics Learning Disability in the Primary School-Age Years. Annals of dyslexia. (Md). 53, 218-253 (2003).
  18. Barahmand, U. Arithmetic Disabilities: Training in Attention and Memory Enhances Artihmetic Ability. Research Journal of Biological Sciences. 3 (11), 1305-1312 (2008).
  19. Reigosa-Crespo, V., et al. Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology. 48 (1), 123-135 (2012).
  20. Hein, J., Bzufka, M. W., Neumärker, K. J. The specific disorder of arithmetic skills. Prevalence studies in a rural and an urban population sample and their clinico-neuropsychological validation. European Child and Adolescent Psychiatry. 9, (2000).
  21. Geary, D. C., Nicholas, A., Li, Y., Sun, J. Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology. 109 (5), 680-693 (2017).
  22. Cowan, R., Powell, D. The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology. 106 (1), 214-229 (2014).
  23. Rubinsten, O., Henik, A. Developmental Dyscalculia: heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences. 13 (2), 92-99 (2009).
  24. Peake, C., Jiménez, J. E., Rodríguez, C. Data-driven heterogeneity in mathematical learning disabilities based on the triple code model. Research in Developmental Disabilities. 71, (2017).
  25. Chan, W. W. L., Wong, T. T. Y. Subtypes of mathematical difficulties and their stability. Journal of Educational Psychology. 112 (3), 649-666 (2020).
  26. Bartelet, D., Ansari, D., Vaessen, A., Blomert, L. Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities. 35 (3), 657-670 (2014).
  27. Geary, D. C., Hamson, C. O., Hoard, M. K. Numerical and arithmetical cognition: a longitudinal study of process and concept deficits in children with learning disability. Journal of experimental child psychology. 77 (3), 236-263 (2000).
  28. Landerl, K., Bevan, A., Butterworth, B. Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition. 93 (2), 99-125 (2004).
  29. Moura, R., et al. Journal of Experimental Child Transcoding abilities in typical and atypical mathematics achievers : The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology. 116 (3), 707-727 (2013).
  30. De Smedt, B., Gilmore, C. K. Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology. 108 (2), 278-292 (2011).
  31. Andersson, U., Östergren, R. Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences. 22 (6), 701-714 (2012).
  32. Geary, D. C., Hoard, M. K., Nugent, L., Byrd-Craven, J. Development of Number Line Representations in Children With Mathematical Learning Disability. Developmental neuropsychology. , (2008).
  33. van't Noordende, J. E., van Hoogmoed, A. H., Schot, W. D., Kroesbergen, E. H. Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research. 80 (3), 368-378 (2016).
  34. Chan, B. M., Ho, C. S. The cognitive profile of Chinese children with mathematics difficulties. Journal of Experimental Child Psychology. 107 (3), 260-279 (2010).
  35. Geary, D. C., Hoard, M. K., Bailey, D. H. Fact Retrieval Deficits in Low Achieving Children and Children With Mathematical Learning Disability. Journal of Learning Disabilities. 45 (4), 291-307 (2012).
  36. Clarke, B., Shinn, M., Shinn, M. R. A Preliminary Investigation Into the Identification and Development of Early Mathematics Curriculum-Based Measurement. Psychology Review. 33 (2), 234-248 (2004).
  37. David, C. V. Working memory deficits in Math learning difficulties: A meta-analysis. British Journal of Developmental Disabilities. 58 (2), 67-84 (2012).
  38. Peng, P., Fuchs, D. A Meta-Analysis of Working Memory Deficits in Children With Learning Difficulties: Is There a Difference Between Verbal Domain and Numerical Domain. Journal of Learning Disabilities. 49 (1), 3-20 (2016).
  39. Peng, P., et al. Examining the mutual relations between language and mathematics: A meta-analysis. Psychological Bulletin. 146 (7), 595-634 (2020).
  40. Andersson, U., Lyxell, B. Working memory deficit in children with mathematical difficulties: A general or specific deficit. Journal of Experimental Child Psychology. 96 (3), 197-228 (2007).
  41. Guzmán, B., Rodríguez, C., Sepúlveda, F., Ferreira, R. A. Number Sense Abilities , Working Memory and RAN: A Longitudinal. Revista de Psicodidáctica. 24, 62-70 (2019).
  42. Passolunghi, M. C., Cornoldi, C. Working memory failures in children with arithmetical difficulties. Child Neuropsychology. 14 (5), 387-400 (2008).
  43. vander Sluis, S., vander Leij, A., de Jong, P. F. Working Memory in Dutch Children with Reading- and Arithmetic-Related LD. Journal of Learning Disabilities. 38 (3), 207-221 (2005).
  44. Lefevre, J. A., et al. Pathways to Mathematics: Longitudinal Predictors of Performance. Child Development. 81 (6), 1753-1767 (2010).
  45. Simmons, F. R., Singleton, C. Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia. 14 (2), 77-94 (2008).
  46. Kleemans, T., Segers, E., Verhoeven, L. Role of linguistic skills in fifth-grade mathematics. Journal of Experimental Child Psychology. 167, 404-413 (2018).
  47. Hecht, S. A., Torgesen, J. K., Wagner, R. K., Rashotte, C. A. The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology. 79 (2), 192-227 (2001).
  48. García-Vidal, J., González-Manjón, D., García-Ortiz, B., Jiménez-Fernández, A. . Evamat: batería para la evaluación de la competencia matemática. , (2010).
  49. Gregoire, J., Nöel, M. P., Van Nieuwenhoven, C. . TEDI-MATH. , (2005).
  50. Navarro, J. I., et al. Estimación del aprendizaje matemático mediante la versión española del Test de Evaluación Matemática Temprana de Utrecht. European Journal of Education and Psychology. 2 (2), 131 (2009).
  51. Cerda Etchepare, G., et al. Adaptación de la versión española del Test de Evaluación Matemática Temprana de Utrecht en Chile . Estudios pedagógicos. 38, 235-253 (2012).
  52. Van De Rijt, B. A. M., Van Luit, J. E. H., Pennings, A. H. The construction of the Utrecht early mathematical competence scales. Educational and Psychological Measurement. 59 (2), 289-309 (1999).
  53. Ginsburg, H., Baroody, A. . Test of early math ability. , (2007).
  54. Butterworth, B. . Dyscalculia Screener. , (2003).
  55. Beacham, N., Trott, C. Screening for Dyscalculia within HE. MSOR Connections. 5 (1), 1-4 (2005).
  56. Karagiannakis, G., Noël, M. -. P. Mathematical Profile Test: A Preliminary Evaluation of an Online Assessment for Mathematics Skills of Children in Grades 1-6. Behavioral Sciences. 10 (8), 126 (2020).
  57. Lee, E. K., et al. Development of the Computerized Mathematics Test in Korean Children and Adolescents. Journal of the Korean Academy of Child and Adolescent Psychiatry. 28 (3), 174-182 (2017).
  58. Cangöz, B., Altun, A., Olkun, S., Kaçar, F. Computer based screening dyscalculia: Cognitive and neuropsychological correlates. Turkish Online Journal of Educational Technology. 12 (3), 33-38 (2013).
  59. Zygouris, N. C., et al. Screening for disorders of mathematics via a web application. IEEE Global Engineering Education Conference, EDUCON. , 502-507 (2017).
  60. Jiménez, J. E., Rodríguez, C. . Batería multimedia para la evaluación de habilidades cognitivas y básicas en matemáticas (BM-PROMA). , (2020).
  61. Nuerk, H. -. C., Weger, U., Willmes, K. On the Perceptual Generality of the Unit-DecadeCompatibility Effect. Experimental Psychology (formerly "Zeitschrift für Experimentelle Psychologie". 51 (1), 72-79 (2004).
  62. Nuerk, H. -. C., Weger, U., Willmes, K. Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition. 82 (1), 25-33 (2001).
  63. Booth, J. L., Siegler, R. S. Developmental and individual differences in pure numerical estimation. Developmental Psychology. 42 (1), 189-201 (2006).
  64. Case, R., Kurland, D. M., Goldberg, J. Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology. 33 (3), 386-404 (1982).
  65. Denckla, M. B., Rudel, R. Rapid "Automatized" Naming of Pictured Objects, Colors, Letters and Numbers by Normal Children. Cortex. 10 (2), 186-202 (1974).
  66. Milner, B. Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin. 27, 272-277 (1971).
  67. Rosseel, Y. lavaan: An R package for structural equation modeling. Journal of Statistical Software. 48 (2), 1-36 (2012).
  68. Knops, A., Nuerk, H. -. C., Göbel, S. M. Domain-general factors influencing numerical and arithmetic processing. Journal of Numerical Cognition. 3 (2), 112-132 (2017).
  69. Torresi, S. Review Interaction between domain-specific and domain-general abilities in math's competence. Journal of Applied Cognitive Neuroscience. 1 (1), 43-51 (2020).
  70. Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., Pascual-Leone, J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience. 30, 239-250 (2018).
  71. Dehaene, S. Varieties of numerical abilities. Cognition. 44 (1-2), 1-42 (1992).
  72. Streiner, D. L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. Statistical Developments and Applications. 80 (1), 99-103 (2003).
  73. Zainudin, A. Validating the measurement model CFA. A handbook on structural equation modeling. , 54-73 (2014).
  74. Brown, T. A. . Confirmatory factor analysis for applied reaearch. (9), (2015).
  75. Kline, R. B. . Principles and practice of structural equation modeling. , (2011).
  76. Putnick, D. L., Bornstein, M. H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review. 41, 71-90 (2016).
  77. Artiles, C., Jiménez, J. E. Prueba de Cáculo Artimético. Normativización de instrumentos para la detección e identificación de las necesidades educativas del alumnado con trastorno por déficit de atención con o sin hiperactividad (TDAH) o alumnado con dificultades específicas de aprendizaje (DEA). , 13-26 (2011).
  78. Hosmer, D., Lemeshow, S., Rod, X. Sturdivant. Applied Logistic Regression. , (2013).
  79. Smolkowski, K., Cummings, K. D. Evaluation of Diagnostic Systems: The Selection of Students at Risk of Academic Difficulties. Assessment for Effective Intervention. 41 (1), 41-54 (2015).
  80. Piazza, M., et al. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition. 116 (1), 33-41 (2010).
  81. Van Hoof, J., Verschaffel, L., Ghesquière, P., Van Dooren, W. The natural number bias and its role in rational number understanding in children with dyscalculia. Delay or deficit. Research in Developmental Disabilities. 71, 181-190 (2017).
  82. Swanson, H. L., Jerman, O., Zheng, X. Growth in Working Memory and Mathematical Problem Solving in Children at Risk and Not at Risk for Serious Math Difficulties. Journal of Educational Psychology. 100 (2), 343-379 (2008).
  83. Kroesbergen, E., Van Luit, J. E. H., Van De Rijt, B. A. M. Young children at risk for math disabilities: Counting skills and executive functions. Journal of Psychoeducational Assessment. , (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved