JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Genetics

Genome-wide Analysis of Histone Modifications Distribution using the Chromatin Immunoprecipitation Sequencing Method in Magnaporthe oryzae

Published: June 2nd, 2021

DOI:

10.3791/62423

1Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, Beijing University of Agriculture
* These authors contributed equally

Here, we present a protocol to analyze the genome-wide distribution of histone modifications, which can identify new target genes in the pathogenesis of M. oryzae and other filamentous fungi.

Chromatin immunoprecipitation sequencing (ChIP-seq) is a powerful and widely used molecular technique for mapping whole genome locations of transcription factors (TFs), chromatin regulators, and histone modifications, as well as detecting entire genomes for uncovering TF binding patterns and histone posttranslational modifications. Chromatin-modifying activities, such as histone methylation, are often recruited to specific gene regulatory sequences, causing localized changes in chromatin structures and resulting in specific transcriptional effects. The rice blast is a devastating fungal disease on rice throughout the world and is a model system for studying fungus-plant interaction. However, the molecular mechanisms in how the histone modifications regulate their virulence genes in Magnaporthe oryzae remain elusive. More researchers need to use ChIP-seq to study how histone epigenetic modification regulates their target genes. ChIP-seq is also widely used to study the interaction between protein and DNA in animals and plants, but it is less used in the field of plant pathology and has not been well developed. In this paper, we describe the experimental process and operation method of ChIP-seq to identify the genome-wide distribution of histone methylation (such as H3K4me3) that binds to the functional target genes in M. oryzae. Here, we present a protocol to analyze the genome-wide distribution of histone modifications, which can identify new target genes in the pathogenesis of M. oryzae and other filamentous fungi.

Epigenetics is a branch of genetic research that refers to the heritable change of gene expression without changing the nucleotide sequence of genes. An increasing number of studies have shown that epigenetic regulation plays an important role in the growth and development of eukaryotic cells, including chromatin that regulates and affects gene expression through the dynamic process of folding and assembly into higher-order structures1,2. Chromatin remodeling and covalent histone modification affect and regulate the function and structure of chromatin through the variation of chromatin polymers, thereby achiev....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation of protoplasts from M. oryzae

  1. Prepare the oatmeal-tomato agar (OTA).
    1. Weigh 30-50 g of oatmeal and boil it in 800 mL of water (ddH2O) for 20 min. Filter through two layers of gauze and take the filtrate.
    2. Pick ripe tomatoes and peel them. Squeeze the juice, and filter through two layers of gauze to collect 150 mL of the filtered juice.
    3. Mix all the tomato juice and the prepared oat filtrate thoroughly and add ddH2O up to 1000 mL.

      Log in or to access full content. Learn more about your institution’s access to JoVE content here

The whole flow chart of the ChIP-seq method is shown in Figure 1. ChIP-seq experiments were performed using antibodies against H3K4me3 in the wild-type strain P131 and three null mutant strains that were devoid of mobre2, mospp1, and moswd2 gene to verify the whole genome-wide profile of histone H3K4me3 distribution in M. oryzae. The protoplasts of the wild-type strain, Δmobre2, Δmospp1, and Δmoswd2, were prepared .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Recently, ChIP-seq has become a widely used genomic analysis method for determining the binding sites of TFs or enrichment sites modified by specific histones. Compared to previous ChIP-seq technology, new ChIP-seq technology is highly sensitive and flexible. Results are provided in high resolution without negative effects, such as the noise signal caused by the non-specific hybridization of nucleic acids. Although this is a common gene expression analysis, many computational methods have been validated, and the complexi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by National Natural Science Foundation of China (Grant no. 31871638), the Special Scientific Research Project of Beijing Agriculture University (YQ201603), the Scientific Project of Beijing Educational Committee (KM201610020005), the High-level scientific research cultivation project of BUA (GJB2021005).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
acidic casein hydrolysate WAKO 65072-00-6 Medium configuration
agar powder scientan 9002-18-0 Medium configuration
deoxycholic acid MedChemExpress 83-44-3 protein and dissolution
DNA End-Repair kit NovoBiotec ER81050 Repair DNA or cDNA damaged by enzymatic or mechanical shearing
Dynabeads Invitrogen no.100.02D Binding target
EB buffer JIMEI JC2174 Membrane and liquid
EDTA ThermoFisher AM9912 protease inhibitor
enzymatic casein hydrolysate Sigma 91079-40-2 Medium configuration
glucose Sigma 50-99-7 Medium configuration
glycogen ThermoFisher AM9510 Precipitant action
H3K4me3 antibodies Abcam ab8580 Immune response to H3K4me3 protein
illumina Genome Analyzer illumina illumina Hiseq 2000 Large configuration
Illumina PCR primers illumina CleanPlex Random universal primer
isoamyl alcohol chemical book 30899-19-5 Purified DNA
LiCl ThermoFisher AM9480 specific removal RNA
lysing enzymes Sigma L1412-10G cell lysis buffer
Mouse IgG Yeasen 36111ES10 Animal normal immunoglobulin
NaCl solution ThermoFisher 7647-14-5 Medium configuration
NaHCO3 Seebio SH30173.08* preparation of protein complex eluent
NP-40 ThermoFisher 85124 cell lysate to promote cell lysis
PCR Purification kit Qiagen 28004 The purification procedure removes primers from DNA samples
protease inhibitors ThermoFisher A32965 A protein inhibitor that decreases protein activity
Proteinase K ThermoFisher AM2546 DNA Extraction Reagent
Qubit 4.0 ThermoFisher Q33226 Medium configuration
RIPA buffer ThermoFisher 9806S cell lysis buffer
RNase A ThermoFisher AM2271 Purified DNA
SDS ThermoFisher AM9820 cover up the charge differences
sodium acetate solution ThermoFisher R1181 Acetic acid buffer
sodium deoxycholate ThermoFisher 89904 inhibition of protease degradation
T4 DNA ligase ThermoFisher EL0011 Under the condition of ATP as coenzyme, DNA ligase
T4 DNA ligase buffer ThermoFisher B69 DNA ligase buffer
Tris-HCl ThermoFisher 1185-53-1 buffer action
Triton X-100 ThermoFisher HFH10 keep the membrane protein stable
yeast extract OXOID LP0021 Medium configuration

  1. Kornberg, R. D. Chromatin structure: are repeating unit of histones and DNA. Science. 184 (4139), 868-871 (1974).
  2. Luger, K., et al. Crystal structure of the nucleosomecore particle at 2.8 a resolution. Nature. 389 (6648), 251-260 (1997).
  3. Strathl, B. D., Allis, C. D. The language of covalent histone modifications. Nature. 403 (6765), 41-45 (2000).
  4. Lachner, M., Jenuwein, T. The many faces of histone lysine methylation. Current Opinion in Cell Biology. 14 (3), 286-298 (2002).
  5. Bhaumik, S. R., et al. Covalent modifications of histones during development and disease pathogenesis. Nature Structural and Molecular Biology. 14 (11), 1008-1016 (2007).
  6. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Current Opinion in Cell Biology. 20 (3), 341-348 (2008).
  7. Berger, S. L. The complex language of chromatin regulation during transcription. Nature. 447 (7143), 407-412 (2007).
  8. Bernstein, B. E., et al. The mammalian epigenome. Cell. 128 (4), 669-681 (2007).
  9. Weake, V. M., Workman, J. L. Histone ubiquitination: triggering gene activity. Molecular Cell. 29 (6), 653-663 (2008).
  10. Workman, J. L., Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual Review of Biochemistry. 67 (1), 545-579 (2003).
  11. Kouzarides, T. Chromatin modifications and their function. Cell. 128 (4), 693-705 (2007).
  12. Akhtar, J., More, P., Albrecht, S. ChIP-Seq from limited starting material of K562 cells and Drosophila neuroblasts using tagmentation assisted fragmentation approach. Bio-protocol. 10 (4), 3520 (2020).
  13. Steinhauser, S., Kurzawa, N., Eils, R., Herrmann, C. A comprehensive comparison of tools of differential ChIP-seq analysis. Briefings in Bioinformatics. 17 (6), 953-966 (2016).
  14. Kieu, T., et al. MoSET1 (histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. Plos Genetics. 11 (7), 11005385 (2015).
  15. Vu, B. V., Pham, K. T., Nakayashiki, H. Substrate-induced transcriptional activation of the MoCel7C cellulase gene is associated with methylation of histone H3 at lysine 4 in the rice blast fungus Magnaporthe oryzae. Applied and Environmental Microbiology. 79 (21), 6823-6832 (2013).
  16. Kazan, K., Gardiner, D. M., Manners, J. M. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology. 13 (4), 399-413 (2012).
  17. Wang, G. H., et al. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. PLoS One. 7 (5), 38324 (2012).
  18. Liu, Y., et al. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environmental Microbiology. 17 (11), 4615-4630 (2016).
  19. Zhang, M. Y., et al. The plant infection test: spray and wound-mediated inoculation with the plant pathogen Magnaporthe grisea. Journal of Visualized Experiments. (138), e57675 (2018).
  20. Connolly, L. R., Smith, K. M., Freitag, M. The Fusarium graminearum histone H3K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PloS Genetics. 9 (10), 1003916 (2013).
  21. Palmer, J. M., et al. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ. 1, 4 (2013).
  22. Ding, S. L., et al. The Tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. The Plant Cell. 22 (7), 2495-2508 (2010).
  23. Dean, R. A., et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 434 (7036), 980-986 (2005).
  24. Allis, C. D., et al. New nomenclature for chromatin-modifying enzymes. Cell. 131 (4), 633-636 (2007).
  25. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annual Review of Biochemistry. 81, 65-95 (2012).
  26. Zhou, S. D., et al. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. Molecular Plant Pathology. 22 (4), 422-439 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved