A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The protocol for conducting fNIRS hyperscanning experiments on collaborative learning dyads in a naturalistic learning environment is outlined. Further, a pipeline to analyze the Inter-Brain Synchrony (IBS) of oxygenated hemoglobin (Oxy-Hb) signals is presented.
fNIRS hyperscanning is widely used to detect the neurobiological underpinnings of social interaction. With this technique, researchers qualify the concurrent brain activity of two or more interactive individuals with a novel index called inter-brain synchrony (IBS) (i.e., phase and/or amplitude alignment of the neuronal or hemodynamic signals across time). A protocol for conducting fNIRS hyperscanning experiments on collaborative learning dyads in a naturalistic learning environment is presented here. Further, a pipeline of analyzing IBS of oxygenated hemoglobin (Oxy-Hb) signal is explained. Specifically, the experimental design, the process of NIRS data recording, data analysis methods, and future directions are all discussed. Overall, implementing a standardized fNIRS hyperscanning pipeline is a fundamental part of second-person neuroscience. Also, this is in line with the call for open-science to aid the reproducibility of research.
Recently, to reveal the concurrent brain activity across the interactive dyads or members of a group, researchers employ the hyperscanning approach1,2. Specifically, electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS) are used to record the neural and brain activities from two or more subjects simultaneously3,4,5. Researchers extract a neural index entailing concurrent brain coupling based on this technique, which refers to inter-brain synchrony (IBS) (i.e., phase and/or amplitude alignment of the neuronal or hemodynamic signals across time). A large variety of hyperscanning research found IBS during social interaction between multiple individuals (e.g., player-audience, instructor-learner, and leader-follower)6,7,8. Furthermore, IBS holds specific implications of effective learning and instruction9,10,11,12,13,14. With the surging of hyperscanning research in naturalistic learning scenarios, establishing a standard protocol of hyperscanning experiments and the pipeline of data analysis in this field is necessary.
Thus, this paper provides a protocol for conducting fNIRS-based hyperscanning of collaborative learning dyads and a pipeline for analyzing IBS. fNIRS is an optical imaging tool, which radiates near-infrared light to assess the spectral absorption of hemoglobin indirectly, and then hemodynamic/oxygenation activity is measured15,16,17. Compared with fMRI, fNIRS is less prone to motion artifacts, allowing measurements from subjects who are doing real-life experiments (e.g., imitation, talking, and non-verbal communication)18,7,19. In comparison with EEG, fNIRS holds higher spatial resolution, allowing researchers to detect the location of brain activity20. Thus, these advantages in spatial resolution, logistics, and feasibility qualify fNIRS to conduct hyperscanning measurement1. Using this technology, an emerging research body detects an index term as IBS-the neural alignment of two (or more) people's brain activity-in different forms of naturalistic social settings9,10,11,12,13,14. In those studies, various methods (i.e., Correlation analysis and Wavelet Transform Coherence (WTC) analysis) are applied to calculate this index; meanwhile, a standard pipeline on such analysis is essential but lacking. As a result, a protocol for conducting fNIRS-based hyperscanning and a pipeline using WTC analysis to identify IBS is presented in this work
This study aims to evaluate IBS in collaborative learning dyads using the fNIRS hyperscanning technique. First, a hemodynamic response is recorded simultaneously in each dyads' prefrontal and left temporoparietal regions during a collaborative learning task. These regions have been identified as associated with interactive teaching and learning9,10,11,12,13,14. Second, the IBS is calculated on each corresponding channel. The fNIRS data recording process consists of two parts: resting-state session and collaborative session. The resting-state session lasts for 5 min, during which both the participants (sitting face-to-face, apart from one another by a table (0.8 m)) are required to remain still and relax. This resting-state session is served as the baseline. Then, in the collaborative session, the participants are told to study the entire learning materials together, eliciting understanding, summarizing the rules, and making sure all learning materials are mastered. Here, the specific steps of conducting the experiment and fNIRS data analysis are presented.
All recruited participants (40 dyads, mean age 22.1 ± 1.2 years; 100% right-handed; normal or corrected-to-normal vision) were healthy. Before the experiment, participants gave informed consent. Participants were financially compensated for their participation. The study was approved by the University Committee of Human Research Protection (HR-0053-2021), East China Normal University.
1. Preparation steps before adopting data
2. Adopting data by instructing participants
3. Data analysis
Figure 1 illustrates the experimental protocol and probe location. The fNIRS data recording process consists of two parts: resting-state session (5 min) and collaborative session (15-20 min). The collaborative learning dyads are required to relax and to keep still in the resting-state session. After that, participants are told to co-learning the learning material (Figure 1A). Their prefrontal and left temporoparietal regions are covered by the corresponding prob...
First, in the present protocol, the specific steps of conducting fNIRS hyperscanning experiments in a collaborative learning scenario are stated. Second, the data analysis pipeline that assesses the IBS of hemodynamic signals in collaborative learning dyads is also presented. The detailed operation on conducting fNIRS hyperscanning experiments would promote the development of open-science. Furthermore, the analysis pipeline is provided here to increase the reproducibility of hyperscanning research. In the following, the ...
The authors have nothing to disclose.
This work is supported by the ECNU Academic Innovation Promotion Program for Excellent Doctoral Students (YBNLTS2019-025) and the National Natural Science Foundation of China (31872783 and 71942001).
Name | Company | Catalog Number | Comments |
EEG caps | Compumedics Neuroscan,Charlotte,USA | 64-channel Quik-Cap | We choose two sizes of cap(i.e.medium and large). |
NIRS measurement system with probe sets and probe holder grids | Hitachi Medical Corporation, Tokyo, Japan | ETG-7100 Optical Topography System | The current study protocol requires an optional second adult probe set for 92 channels of measurement in total. |
Numeric computing platform | The MathWorks, Inc., Natick, MA | MATLAB R2020a | Serves as base for Psychophysics Toolbox extensions (stimulus presentation), Homer2 (fNIRS preprocess analysis), and "wtc" function(WTC computation). |
Psychology software | psychology software tools,Sharpsburg, PA,USA | E-prime 2.0 | We apply E-prime to start the fNIRS measurement system and send triggers which marking the rest phase and collaborative learning phase for fNIRS recording data. |
Swimming caps | Zoke corporation,Shanghai,China | 611503314 | We first placed the standard 10-20 EEG cap on the head mold, and placed the swimming cap on the EEG cap. Second, we marked (inion, Cz, T3, T4, PFC and P5) with chalk. |
Three-dimensional (3-D) digitizer | Polhemus, Colchester, VT, USA; | Three-dimensional (3-D) digitizer | Anatomical locations of optodes in relation to standard head landmarks were determined for each participant using a Patriot 3D Digitizer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved