A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Developmental Biology
The loss of function of melanocytes leads to vitiligo, which seriously affects the physical and mental health of the affected individuals. Presently, there is no effective long-term treatment for vitiligo. Therefore, it is imperative to develop a convenient and effective treatment for vitiligo. Regenerative medicine technology for direct reprogramming of skin cells into melanocytes seems to be a promising novel treatment of vitiligo. This involves the direct reprogramming of the patient's skin cells into functional melanocytes to help ameliorate the loss of melanocytes in patients with vitiligo. However, this method needs to be first tested on mice. Although direct reprogramming is widely used, there is no clear protocol for direct reprogramming into melanocytes. Moreover, the number of available transcription factors is overwhelming.
Here, a concentrated lentivirus packaging system protocol is presented to produce transcription factors selected for reprogramming skin cells to melanocytes, including Sox10, Mitf, Pax3, Sox2, Sox9, and Snai2. Mouse embryonic fibroblasts (MEFs) were infected with the concentrated lentivirus for all these transcription factors for the direct reprogramming of the MEFs into induced melanocytes (iMels) in vitro. Furthermore, these transcription factors were screened, and the system was optimized for direct reprogramming to melanocytes. The expression of the characteristic markers of melanin in iMels at the gene or protein level was significantly increased. These results suggest that direct reprogramming of fibroblasts to melanocytes could be a successful new therapeutic strategy for vitiligo and confirm the mechanism of melanocyte development, which will provide the basis for further direct reprogramming of fibroblasts into melanocytes in vivo.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved