JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Engineering

Microfluidic Acoustophoresis for Flowthrough Separation of Gram-Negative Bacteria using Aptamer Affinity Beads

Published: October 17th, 2022

DOI:

10.3791/63300

1Department of Digital Anti-Aging Health Care, Inje University, 2Micro device Lab Co., Ltd, 3Biohealth Products Research Center (BPRC), Inje University, 4Department of Biomedical Engineering, Inje University

Abstract

This article describes the fabrication and operation of microfluidic acoustophoretic chips using a microfluidic acoustophoresis technique and aptamer-modified microbeads that can be used for the fast, efficient isolation of Gram-negative bacteria from a medium. This method enhances the separation efficiency using a mix of long, square microchannels. In this system, the sample and buffer are injected into the inlet port through a flow controller. For bead centering and sample separation, AC power is applied to the piezoelectric transducer via a function generator with a power amplifier to generate acoustic radiation force in the microchannel. There is a bifurcated channel at both the inlet and outlet, enabling simultaneous separation, purification, and concentration. The device has a recovery rate of >98% and purity of 97.8% up to a 10x dose concentration. This study has demonstrated a recovery rate and purity higher than the existing methods for separating bacteria, suggesting that the device can separate bacteria efficiently.

Explore More Videos

Keywords Microfluidic Acoustophoresis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved