A subscription to JoVE is required to view this content. Sign in or start your free trial.
This paper describesthe fabrication and operation of microfluidic acoustophoretic chips using the microfluidic acoustophoresis technique and aptamer-modified microbeads that can be used for fast, efficient isolation of Gram-negative bacteria from a medium.
This article describes the fabrication and operation of microfluidic acoustophoretic chips using a microfluidic acoustophoresis technique and aptamer-modified microbeads that can be used for the fast, efficient isolation of Gram-negative bacteria from a medium. This method enhances the separation efficiency using a mix of long, square microchannels. In this system, the sample and buffer are injected into the inlet port through a flow controller. For bead centering and sample separation, AC power is applied to the piezoelectric transducer via a function generator with a power amplifier to generate acoustic radiation force in the microchannel. There is a bifurcated channel at both the inlet and outlet, enabling simultaneous separation, purification, and concentration. The device has a recovery rate of >98% and purity of 97.8% up to a 10x dose concentration. This study has demonstrated a recovery rate and purity higher than the existing methods for separating bacteria, suggesting that the device can separate bacteria efficiently.
Microfluidic platforms are being developed to isolate bacteria from medical and environmental samples, in addition to methods based on dielectric transfer, magnetophoresis, bead extraction, filtering, centrifugal microfluidics and inertial effects, and surface acoustic waves1,2. The detection of pathogenic bacteria is continued using polymerase chain reaction (PCR), but it is usually laborious, complex, and time-consuming3,4. Microfluidic acoustophoresis systems are an alternative to address this through reasonable throughput and non-contact cell ....
1. Microfluidic acoustophoresis chip design
NOTE: Figure 1 shows a schematic of the separation and collection of target microbeads from microchannels by acoustophoresis. The microfluidic acoustophoresis chip is designed with a CAD program.
Figure 5 shows the image of bead flow as a function of PZT voltage (OFF, 0.1 V, 0.5 V, 5 V). In the case of the acoustophoretic chip introduced in this study, it was confirmed that as the voltage of the PZT increased, the central concentration of the 10 µm-sized beads increased. Most of the 10 µm-sized beads were concentrated in the center at 5 V of the PZT voltage. Through this result, a resonant frequency of 3.66 MHz was generated in a single channel function generator, and a gen.......
We developed a sonic levitation microfluidic device for capturing and transferring GN bacteria from culture samples at high speed based on a continuous running method according to their size and type, and aptamer-modified microbeads. The long, square microchannel enables a simpler design and greater cost-efficiency for 2D acoustophoresis than previously reported20,21,22,23,
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT). (No. NRF-2021R1A2C1011380)
....Name | Company | Catalog Number | Comments |
1 µm polystyrene microbeads | Bang Laboratories | PS04001 | Cell size beads |
10 µm Streptavidin-coated microbeads | Bang Laboratories | CP01007 | Aptamer affinity beads |
4-inch Silicon Wafer/SU-8 mold | 4science | 29-03573-01 | Components of chip |
Aptamer | Integrated DNA Technologies | GN3-6' | RNA for bacteria conjugation |
Borosilicate glass | Schott | BOROFLOAT 33 | Components of chip |
Centrifuge | Daihan | CF-10 | Wasing particles |
Cyanoacrylate glue | 3M | AD100 | Attach PZT to microchip |
Escherichia coli DH5α | KCTC | KCTC2571 | Target bacteria |
Functional generator | GW Instek | AFG-2225 | Generate frequency |
High-speed camera | Photron | FASTCAM Mini | Observation of separation |
Hot plate | As one | HI-1000 | Heating plate for curing of liquid PDMS |
KOVAX-SYRINGE 10 mL Syringe | Koreavaccine | 22G-10ML | Fill the microfluidic acoustophoresis channel with bubble-free demineralized water. |
Liquid polydimethylsiloxane, PDMS | Dow Corning Inc. | Sylgard 184 | Components of chip |
LB Broth Miller | BD Difco | 244620 | Cell culture (Luria-Bertani medium) |
Microscope | Olympus Corp. | IX-81 | Observation of separation |
PBS buffer | Capricorn scientific | PBS-1A | Wasing bacteria |
PEEK Tubes | Saint-Gobain Ppl Corp. | AAD04103 | Inject or collect particles |
Piezoelectric transducer | Fuji Ceramics | C-213 | Generate specific wave in channel |
Power amplifier | Amplifier Research | 75A250A | Amplify frequency |
Pressure controller/μflucon | AMED | AMED-μflucon | Control of air pressure/flow controller |
Tris-HCl buffer | invitrogen | 15567027 | Wasing particles |
Tube rotator | SeouLin Bioscience | SLRM-3 | Modifiying aptamer and bead |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved