JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

孟加拉玫瑰介导的光动力疗法抑制 白色念珠菌

Published: March 24th, 2022

DOI:

10.3791/63558

* These authors contributed equally

耐药性白色念珠菌的发病率不断上升,这是全世界的一个严重健康问题。抗菌光动力疗法 (aPDT) 可能提供对抗耐药性真菌感染的策略。本方案描述了Rose bengal介导的apDT在体外耐多药白色念珠菌菌株的疗效。

侵袭性 白色念珠菌 感染是人类中一种严重的机会性真菌感染,因为它是肠道,口腔,阴道和皮肤最常见的定殖者之一。尽管有抗真菌药物,但侵袭性念珠菌病的死亡率仍约为50%。不幸的是,耐药性 白色念珠菌 的发病率在全球范围内正在增加。抗菌光动力疗法(aPDT)可以提供替代或辅助治疗,以抑制 白色念珠菌 生物膜的形成并克服耐药性。孟加拉玫瑰(RB)介导的aPDT已经显示出对细菌和 白色念珠菌的有效细胞杀伤。在这项研究中,描述了RB-aPDT对耐多药 白色念珠菌的 疗效。自制的绿色发光二极管(LED)光源设计用于与96孔板的孔的中心对齐。酵母在具有不同浓度RB的孔中孵育,并用不同流量的绿光照亮。采用平板稀释法分析杀伤效果。通过光和RB的最佳组合,实现了3对数生长抑制。得出的结论是,RB-aPDT可能潜在地抑制耐药的 白色念珠菌

白色念珠菌定植于健康个体的胃肠道和泌尿生殖道中,在约50%的个体中可被检测为正常微生物群1。如果在宿主和病原体之间产生不平衡,白色念珠菌能够入侵并引起疾病。感染的范围可以从局部粘膜感染到多器官衰竭2。在美国的一项多中心监测研究中,2009 年至 2017 年间,从侵袭性念珠菌病患者中分离出的约一半是白色念珠菌 3 号。念珠菌血症可能与高发病率、死亡率、住院时间延长有关4.美国疾病控制和预防中心报告说,在所有测试的念珠菌血液样本中,约有7%对抗真菌药物氟康唑5具有耐药性。耐药性念珠菌属的出现引起了人们的关切,即开发抗真菌药物的替代或辅助疗法。

抗菌光动力疗法(aPDT)涉及用PS6峰值吸收波长处的光激活特定的光敏剂(PS)。激发后,激发的PS将其能量或电子转移到附近的氧分子并返回到基态。在此过程中,形成活性氧和单线态氧并引起细胞损伤。aPDT自20世纪90年代以来已被广泛用于杀死微生物7。aPDT的一个好处是,在照射过程中,单线态氧和/或活性氧(ROS)在细胞中会损坏多个细胞器....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. aPDT系统准备

  1. 从LED灯条上切割四个绿色发光二极管(LED)(参见 材料表),并将它们与96孔板的四个孔对齐(图1)。
    注:LED 被排列成一个 4 x 3 阵列。LED的背面粘附在散热器上以在照射过程中分散热量。
  2. 使用光功率计测量LED在540 nm处的通量率11 (参见 材料表)。参见 补充图1 ,确保LED?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

图1 显示了本研究中使用的apDT系统。由于高温可能导致严重的电池死亡,因此LED阵列由电风扇冷却,并在照射过程中使用散热器将恒定温度保持在25±1°C。 热效应可以打折。具有均匀的光分布也是成功的apDT的重要决定因素;因此,在照明期间将LED灯泡精确地对准井至关重要。由于LED的亮度,在开灯之前需要配备太阳镜。

白色念珠菌 立即用RB染色,.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

最近报道了RB-PDT治疗真菌性角膜炎的临床应用结果令人鼓舞 19.RB的吸收峰在450-650nm处。确定光源的通量率对于成功的apDT至关重要。治疗癌细胞需要高通量(通常>100 J / cm2),而较低的通量有望治疗感染的病变6。高通量意味着长时间暴露,这在临床环境中可能不切实际。对于治疗真菌性角膜炎,眼科界同意5.4 J/ cm 2 20。RB的孵育.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这项工作已获得国立成功大学应用纳米医学中心的资助,教育部(MOE)高等教育萌芽项目框架内的特色区域研究中心计划,以及台湾科技部[MOST 109-2327-B-006-005]到TW Wong。洪俊华感谢台湾成功大学医院[NCKUH-11006018]和[MOST 110-2314-B-006-086-MY3]的资助。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1.5 mL microfuge tubeNeptune, San Diego, USA#3745.x
5 mL round-bottom tube with cell strainer capFalcon, USA#352235
96-well plateAlpha plus, Taoyuan Hsien, Taiwan#16196
Aluminum foilsunmei, Tainan, Taiwan
Aluminum heat sinkNanyi electronics Co., Ltd., Tainan, TaiwanBK-T220-0051-01
CentrifugeEppendorf, UK5415Rdisperses heat from the LED array
Graph pad prism softwareGraphPad 8.0, San Diego, California, USAgraphing and statistics software
Green light emitting diode (LED) stripNanyi electronics Co., Ltd., Tainan, Taiwan2835
IncubatorYihder, Taipei, TaiwanLM-570D (R)Emission peak wavelength: 525 nm, Viewing angle: 150°; originated from https://www.aliva.com.tw/product.php?id=63
Light power meterOphir, Jerusalem, IsraelPD300-3W-V1-SENSOR,
Millex 0.22 μm filterMerck, NJ, USASLGVR33RS
Multidrug-resistant Candida albicansBioresource Collection and Research CenterBioresource, Hsinchu, TaiwanBCRC 21538/ATCC 10231http://catalog.bcrc.firdi.org.tw/BcrcContent?bid=21538
OD600 spectrophotometerBiochrom, London, UKUltrospec 10
Rose BengalSigma-Aldrich, MO, USA330000stock concentration 40 mg/mL = 4%, prepare in PBS, stored at 4 °C
Sterilized glass tubeSunmei Co., Ltd., Tainan, TaiwanAK45048-16100
Yeast Extract Peptone Dextrose MediumHIMEDIA, IndiaM1363

  1. Naglik, J. R., Challacombe, S. J., Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and Molecular Biology Reviews. 67 (3), 400-428 (2003).
  2. Pappas, P. G., et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 62 (4), 1-50 (2016).
  3. Ricotta, E. E., et al. Invasive candidiasis species distribution and trends, United States, 2009-2017. Journal of Infectious Diseases. 223 (7), 1295-1302 (2021).
  4. Koehler, P., et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clinical Microbiology and Infection. 25 (10), 1200-1212 (2019).
  5. Toda, M., et al. Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012-2016. Morbidity and Mortality Weekly Report Surveillance Summaries. 68 (8), 1-15 (2019).
  6. Lee, C. N., Hsu, R., Chen, H., Wong, T. W. Daylight photodynamic therapy: an update. Molecules. 25 (21), 5195 (2020).
  7. Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy. 42 (1), 13-28 (1998).
  8. Wong, T. W., et al. Indocyanine green-mediated photodynamic therapy reduces methicillin-resistant staphylococcus aureus drug resistance. Journal of Clinical Medicine. 8 (3), 411 (2019).
  9. Kim, M. M., Darafsheh, A. Light sources and dosimetry techniques for photodynamic therapy. Photochemistry and Photobiology. 96 (2), 280-294 (2020).
  10. Wong, T. W., Sheu, H. M., Lee, J. Y., Fletcher, R. J. Photodynamic therapy for Bowen's disease (squamous cell carcinoma in situ) of the digit. Dermatologic Surgery. 27 (5), 452-456 (2001).
  11. Wong, T. W., et al. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light. Dermatologica Sinica. 36 (1), 8-15 (2018).
  12. Stasko, N., et al. Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue. Scientific Reports. 11 (1), 20595 (2021).
  13. Crosbie, J., Winser, K., Collins, P. Mapping the light field of the Waldmann PDT 1200 lamp: potential for wide-field low light irradiance aminolevulinic acid photodynamic therapy. Photochemistry and Photobiology. 76 (2), 204-207 (2002).
  14. Feenstra, R. P., Tseng, S. C. Comparison of fluorescein and rose bengal staining. Ophthalmology. 99 (4), 605-617 (1992).
  15. Demidova, T. N., Hamblin, M. R. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrobial Agents and Chemotherapy. 49 (6), 2329-2335 (2005).
  16. Shahid, H., et al. Duclauxin derivatives from fungi and their biological activities. Frontiers in Microbiology. 12, 766440 (2021).
  17. Arendrup, M. C., Park, S., Brown, S., Pfaller, M., Perlin, D. S. Evaluation of CLSI M44-A2 disk diffusion and associated breakpoint testing of caspofungin and micafungin using a well-characterized panel of wild-type and fks hot spot mutant Candida isolates. Antimicrobial Agents and Chemotherapy. 55 (5), 1891-1895 (2011).
  18. Mukaremera, L., Lee, K. K., Mora-Montes, H. M., Gow, N. A. R. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology. 8, 629 (2017).
  19. Hung, J. H., et al. Recent advances in photodynamic therapy against fungal keratitis. Pharmaceutics. 13 (12), 2011 (2021).
  20. Martinez, J. D., et al. Rose Bengal photodynamic antimicrobial therapy: a pilot safety study. Cornea. 40 (8), 1036-1043 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved