JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

カンジダ・アルビカンスを阻害するローズベンガル媒介光線力学療法

Published: March 24th, 2022

DOI:

10.3791/63558

* These authors contributed equally

薬剤耐性カン ジダ・アルビカンス の発生率の増加は、世界中で深刻な健康問題です。抗菌光線力学療法(aPDT)は、薬剤耐性真菌感染症と戦うための戦略を提供するかもしれない。本プロトコールは、多剤耐性 C.アルビカン ス株に対するローズベンガル媒介性aPDT有効性を インビトロで記載する。

侵襲性 カンジダ・アルビカンス 感染症は、腸、口、膣、および皮膚の最も一般的な植民者の1つであるため、ヒトにおける重要な日和見真菌感染症である。抗真菌薬が利用可能であるにもかかわらず、侵襲性カンジダ症の死亡率は〜50%のままである。残念なことに、薬剤耐性の C.アルビカンの発生 率は世界的に増加しています。抗菌光線力学療法(aPDT)は、 C.アルビカンス バイオフィルム形成を阻害し、薬物耐性を克服するための代替またはアジュバント治療を提供し得る。ローズベンガル(RB)媒介性aPDTは、細菌および C.アルビカンスの効果的な細胞死滅を示している。この研究では、多剤耐性 C.アルビカンス に対するRB−aPDTの有効性が記載されている。自家製の緑色発光ダイオード(LED)光源は、96ウェルプレートのウェルの中心に合わせるように設計されています。酵母を異なる濃度のRBを有するウェルでインキュベートし、様々な緑色の光のフルエンスで照らした。殺傷効果をプレート希釈法により分析した。光とRBの最適な組み合わせにより、3対数の成長阻害が達成された。RB-aPDTは薬剤耐性 のC.アルビカンスを潜在的に阻害する可能性があると結論付けられた。

C.アルビカンスは 、健常人の胃腸管および尿生殖路に定着し、個体の約50%において正常な微生物叢として検出され得る1。宿主と病原体との間に不均衡が生じると、 C. albicans は侵入して病気を引き起こす可能性があります。感染は、局所粘膜感染から多臓器不全2までの範囲であり得る。米国の多施設サーベイランス研究では、2009年から2017年の間に侵襲性カンジダ症患者からの分離株の約半分が C. albicans3である。カンジデミアは、高い罹患率、死亡率、長期入院4と関連している可能性がある。米国疾病管理予防センターは、試験されたすべてのカンジダ血液サンプルの約7%が抗真菌薬フルコナゾールに耐性があると報告しました5。薬剤耐性 カンジダ 種の出現は、抗真菌剤に代わるものまたはアジュバント療法を開発する懸念を提起する。

抗菌光線力学療法(aPDT)は、PS6のピーク吸収波長の光で特定の光増感剤(PS)を活性化することを含む。励起後、励起されたPSは、そのエネルギーまたは電子を近くの酸素分子に伝達し、基底状態に戻る。このプロ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. aPDTシステムの準備

  1. LEDストリップから緑色の発光ダイオード(LED)を4つ切り取り( 材料表を参照)、96ウェルプレートの4ウェルに合わせます(図1)。
    メモ: LED は 4 x 3 アレイに配置されました。LEDの背面は、照射時に熱を分散させるためにヒートシンクに接着した。
  2. 540nmにおけるLEDのフルエンス率11 を光パワーメー.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

図1は 、本研究で使用されているaPDTシステムを示す。高温は著しい細胞死を引き起こす可能性があるため、LEDアレイを扇風機で冷却し、照射時にはヒートシンクを用いて25±1°Cで一定温度を維持する。 熱効果は割引できます。均一な配光を持つことも、aPDTを成功させるための重要な決定要因です。したがって、照明中にLED電球を井戸に正確に合わせることが重要です。.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

真菌性角膜炎に対するRB−PDTの臨床応用の有望な結果が最近報告されている19。RBの吸収ピークは450〜650nmにある。aPDTを成功させるためには、光源のフルエンス率を決定することが不可欠です。がん細胞の治療には高いフルエンス(通常>100J/cm2)が必要であり、感染病変の治療には低いフルエンスが必要であると予想される6。高いフルエンスは、臨床?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

この研究は、文部(MOE)による高等教育スプラウトプロジェクトの枠組みの中で、国立成昆大学応用ナノ医学センター、国立成昆大学から資金提供を受けており、台湾科学技術部[MOST 109-2327-B-006-005]からTW Wongに資金提供を受けています。J.H. Hungは、台湾の国立成昆大学病院[NCKUH-11006018]および[MOST 110-2314-B-006-086-MY3]からの資金提供を認めています。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1.5 mL microfuge tubeNeptune, San Diego, USA#3745.x
5 mL round-bottom tube with cell strainer capFalcon, USA#352235
96-well plateAlpha plus, Taoyuan Hsien, Taiwan#16196
Aluminum foilsunmei, Tainan, Taiwan
Aluminum heat sinkNanyi electronics Co., Ltd., Tainan, TaiwanBK-T220-0051-01
CentrifugeEppendorf, UK5415Rdisperses heat from the LED array
Graph pad prism softwareGraphPad 8.0, San Diego, California, USAgraphing and statistics software
Green light emitting diode (LED) stripNanyi electronics Co., Ltd., Tainan, Taiwan2835
IncubatorYihder, Taipei, TaiwanLM-570D (R)Emission peak wavelength: 525 nm, Viewing angle: 150°; originated from https://www.aliva.com.tw/product.php?id=63
Light power meterOphir, Jerusalem, IsraelPD300-3W-V1-SENSOR,
Millex 0.22 μm filterMerck, NJ, USASLGVR33RS
Multidrug-resistant Candida albicansBioresource Collection and Research CenterBioresource, Hsinchu, TaiwanBCRC 21538/ATCC 10231http://catalog.bcrc.firdi.org.tw/BcrcContent?bid=21538
OD600 spectrophotometerBiochrom, London, UKUltrospec 10
Rose BengalSigma-Aldrich, MO, USA330000stock concentration 40 mg/mL = 4%, prepare in PBS, stored at 4 °C
Sterilized glass tubeSunmei Co., Ltd., Tainan, TaiwanAK45048-16100
Yeast Extract Peptone Dextrose MediumHIMEDIA, IndiaM1363

  1. Naglik, J. R., Challacombe, S. J., Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and Molecular Biology Reviews. 67 (3), 400-428 (2003).
  2. Pappas, P. G., et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 62 (4), 1-50 (2016).
  3. Ricotta, E. E., et al. Invasive candidiasis species distribution and trends, United States, 2009-2017. Journal of Infectious Diseases. 223 (7), 1295-1302 (2021).
  4. Koehler, P., et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clinical Microbiology and Infection. 25 (10), 1200-1212 (2019).
  5. Toda, M., et al. Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012-2016. Morbidity and Mortality Weekly Report Surveillance Summaries. 68 (8), 1-15 (2019).
  6. Lee, C. N., Hsu, R., Chen, H., Wong, T. W. Daylight photodynamic therapy: an update. Molecules. 25 (21), 5195 (2020).
  7. Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy. 42 (1), 13-28 (1998).
  8. Wong, T. W., et al. Indocyanine green-mediated photodynamic therapy reduces methicillin-resistant staphylococcus aureus drug resistance. Journal of Clinical Medicine. 8 (3), 411 (2019).
  9. Kim, M. M., Darafsheh, A. Light sources and dosimetry techniques for photodynamic therapy. Photochemistry and Photobiology. 96 (2), 280-294 (2020).
  10. Wong, T. W., Sheu, H. M., Lee, J. Y., Fletcher, R. J. Photodynamic therapy for Bowen's disease (squamous cell carcinoma in situ) of the digit. Dermatologic Surgery. 27 (5), 452-456 (2001).
  11. Wong, T. W., et al. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light. Dermatologica Sinica. 36 (1), 8-15 (2018).
  12. Stasko, N., et al. Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue. Scientific Reports. 11 (1), 20595 (2021).
  13. Crosbie, J., Winser, K., Collins, P. Mapping the light field of the Waldmann PDT 1200 lamp: potential for wide-field low light irradiance aminolevulinic acid photodynamic therapy. Photochemistry and Photobiology. 76 (2), 204-207 (2002).
  14. Feenstra, R. P., Tseng, S. C. Comparison of fluorescein and rose bengal staining. Ophthalmology. 99 (4), 605-617 (1992).
  15. Demidova, T. N., Hamblin, M. R. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrobial Agents and Chemotherapy. 49 (6), 2329-2335 (2005).
  16. Shahid, H., et al. Duclauxin derivatives from fungi and their biological activities. Frontiers in Microbiology. 12, 766440 (2021).
  17. Arendrup, M. C., Park, S., Brown, S., Pfaller, M., Perlin, D. S. Evaluation of CLSI M44-A2 disk diffusion and associated breakpoint testing of caspofungin and micafungin using a well-characterized panel of wild-type and fks hot spot mutant Candida isolates. Antimicrobial Agents and Chemotherapy. 55 (5), 1891-1895 (2011).
  18. Mukaremera, L., Lee, K. K., Mora-Montes, H. M., Gow, N. A. R. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology. 8, 629 (2017).
  19. Hung, J. H., et al. Recent advances in photodynamic therapy against fungal keratitis. Pharmaceutics. 13 (12), 2011 (2021).
  20. Martinez, J. D., et al. Rose Bengal photodynamic antimicrobial therapy: a pilot safety study. Cornea. 40 (8), 1036-1043 (2021).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved