A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we describe a mass spectrometry-based proteomic characterization of cell lineages with known tissue fates in the vertebrate Xenopus laevis embryo.
Characterization of molecular events as cells give rise to tissues and organs raises a potential to better understand normal development and design efficient remedies for diseases. Technologies enabling accurate identification and quantification of diverse types and large numbers of proteins would provide still missing information on molecular mechanisms orchestrating tissue and organism development in space and time. Here, we present a mass spectrometry-based protocol that enables the measurement of thousands of proteins in identified cell lineages in Xenopus laevis (frog) embryos. The approach builds on reproducible cell-fate maps and established methods to identify, fluorescently label, track, and sample cells and their progeny (clones) from this model of vertebrate development. After collecting cellular contents using microsampling or isolating cells by dissection or fluorescence-activated cell sorting, proteins are extracted and processed for bottom-up proteomic analysis. Liquid chromatography and capillary electrophoresis are used to provide scalable separation for protein detection and quantification with high-resolution mass spectrometry (HRMS). Representative examples are provided for the proteomic characterization of neural-tissue fated cells. Cell-lineage-guided HRMS proteomics is adaptable to different tissues and organisms. It is sufficiently sensitive, specific, and quantitative to peer into the spatio-temporal dynamics of the proteome during vertebrate development.
Our understanding of cell differentiation and the genesis of tissues and organs is the result of decades of elaborate targeted screens of genes and their products. Increasing our knowledge of all the biomolecules and their quantities during important cellular events would help unravel molecular mechanisms that control the spatial and temporal patterning of the vertebrate body plan. Technologies enabling molecular amplification and sequencing are now able to routinely report on large numbers of genes and transcripts, supporting hypothesis-driven studies in basic biological and translational research. To understand developing systems, a complex relationship between transcription and translation advocates for direct analysis of multiple proteins and their post-translational modifications. Global proteomics using in vitro biological systems, such as induced pluripotent stem cells, began to delineate mechanisms of tissue induction1,2. In complex organisms, such as the vertebrate embryo, development relies on morphogen gradients in the context of space and time3. It follows that gaining knowledge of proteomic changes as cells differentiate to form specialized tissues, such as neural tissues, offers a key to unlock molecular programs controlling normal and defective development and guide next-generation therapeutics.
The vertebrate South African clawed frog (Xenopus laevis) is a well-established model in cell and developmental, neuro-, and regenerative biology. Sir John Gurdon's 2012 Nobel Prize in Physiology or Medicine4,5 for the discovery of pluripotency of the somatic nucleus highlighted the importance of this model for discoveries in basic and translational studies. Xenopus embryos develop externally to the mother, thus facilitating direct manipulation of cells, cell clones, and gene expression over various stages of development. Asymmetrical pigmentation and stereotypical cell divisions enabled the charting of reproducible fate maps from the 16-6 and 32-cell7,8 stage embryo. For high-resolution mass spectrometry (HRMS) based proteomics, additional advantages of the model include relatively large size (~1 mm in diameter), which yields abundant protein content for analysis (~130 µg in early cleavage-stage embryos, ~10 µg of protein content in single cells of the 16-cell embryo)9,10.
At present, HRMS is the leading technology of choice for detecting proteins. This technology enables direct, sensitive, and specific detection and quantification of multiple, usually hundreds-to-thousands of different proteins11. Bottom-up proteomics by HRMS involves a series of interconnected steps. Following extraction from the cell/tissue sample, proteins are digested with a proteolytic enzyme, such as trypsin (bottom-up proteomics). The resulting peptides are separated based on their different physicochemical properties, including hydrophobicity (reversed-phase liquid chromatography, LC), net charge (ion-exchange chromatography), size (size exclusion chromatography), or electrophoretic mobility (capillary electrophoresis, CE). Peptides are then charged (ionized), typically using electrospray ionization (ESI), and peptide ions are detected and sequenced via gas-phase fragmentation by tandem HRMS. The resulting peptide data are mapped to the proteome of the organism being studied. With protein-specific (proteotypic) peptide ion signal intensity correlating with concentration, protein quantification can be performed label-free or label-based (multiplexing quantitation). HRMS proteomics yields a rich resource of information on the molecular state of the system under study, allowing for the generation of hypotheses and follow-up functional studies.
Figure 1: Spatiotemporally scalable proteomics enabling cell-lineage guided HRMS proteomics in the developing (frog) embryo. (A) Visualization of the specimen (1) using a stereomicroscope (2) for injection of an identified cell (inset), using a fabricated micropipette (3) under control by a translation-stage (4). (B) Subcellular sampling of the identified left D11 cell in a 16-cell embryo. (C) Dissection of a whole D11 cell from a 16-cell embryo. (D) Fluorescent (green) tracing of the left and right D111 progenies from a 32-cell embryo to guide dissection of the neural ectoderm (NE) in the gastrula (stage 10) and isolation of the descendent tissue from the tadpole using FACS. Scale bars: 200 µm for embryos, 1.25 mm for the vial. Figures were adapted with permission from references15,19,21,59. Please click here to view a larger version of this figure.
The protocol presented here enables HRMS-based quantification of large numbers of proteins in identified cells/tissues in developing X. laevis embryos. The approach builds on accurate cell identification, reproducible cell fate maps, and established methodologies to track cell lineages in this biological model6,7,8. As shown in Figure 1, we study proteomes from single cells by employing whole-cell dissection or capillary microsampling to aspirate cellular content. Monitoring the lineage of a cell permits us to study the spatiotemporal evolution of the proteome as cells form tissues during gastrulation. The cell progeny is fluorescently marked by injecting a fluorophore conjugated to inert dextran or mRNA for fluorescent protein (e.g., green fluorescent protein, or GFP). The labeled progeny is isolated at desired developmental time points. During gastrulation, cell clones that are tightly clustered may be isolated by dissection. After gastrulation, cell clones may be distributed within the embryo owing to migratory movements and can be isolated from dissociated tissues by fluorescence-activated cell sorting (FACS). Proteins in these cells and tissues are measured via bottom-up proteomics employing HPLC or CE for separation and ESI tandem HRMS for identification. Cell-lineage-guided HRMS proteomics is scalable to different cell sizes and lineages within the embryo and is specific, sensitive, and quantitative. Through select examples shown here, we also demonstrate this protocol to be scalable and broadly adaptable to different types of cells and cell lineages.
Figure 2: The bioanalytical workflow. Micro-dissection and capillary aspiration, or FACS facilitated sampling of cellular and clonal protein content. Depletion of abundant yolk proteins and separation by capillary electrophoresis (CE) or nano-flow liquid chromatography (LC) enhanced identification (ID) sensitivity using electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). Quantification revealed dysregulation, supplying new information for hypothesis-driven studies in conjunction with information available from gene ontology (GO). Figures were adapted with permission from reference15. Please click here to view a larger version of this figure.
All protocols ensuring the humane maintenance and handling of Xenopus laevis adult frogs were approved by the Institutional Animal Care and Use Committee at the University of Maryland, College Park (Approval numbers R-DEC-17-57 and R-FEB-21-07).
1. Prepare the solutions
2. Prepare the tools for microinjection and dissection
3. Isolate the cell lineage
NOTE: The following steps are performed to isolate identified single cells and/or their descendent cell lineages. Usually, the embryo is cultured to the 16- or 32-cell stage, where the tissue fates of each cell are reproducibly mapped6,7,17. The embryonic cells are identified based on morphology, location, and in reference to their fate maps. For single-cell analysis, identified cells are isolated by manual dissection, or their intracellular contents are collected into a capillary pipette and deposited in 5 μL of 0.5 mM ammonium bicarbonate. The resulting sample is stored at -80 °C until analysis (Figure 1)18,19,20,21. For cell lineage analysis, identified cells are injected with a lineage tracer, and their subsequent clones are isolated at key stages of development (e.g., during gastrulation to study tissue induction, following neurulation to study tissue commitment). In what follows, steps are outlined to fluorescently label the lineage of identified cells for isolation by dissection or FACS.
4. Analyze the proteins by mass spectrometry
Proteomic characterization of the isolated tissues or cells is based on a series of established steps in HRMS. Figure 2 illustrates the steps of the bioanalytical workflow. The sample collection protocol used here is compatible with bottom-up11, middle-down25, or top-down26 workflows of proteomics. In what follows, the bottom-up strategy used in this study is described, which has proved to be sensitive, quantitative, and adaptable to diverse types of mass spectrometers. After extracting and enzymatically digesting proteins, the resulting peptides are separated, followed by HRMS analysis.
This protocol enabled the study of proteins in single cells and their lineages as they establish tissues in X. laevis embryos. Figure 1 illustrates one such application of the approach to study proteins in neural-tissue-fated cells and the newly induced neural ectoderm in the embryo. As shown in Figure 1A, the bioanalytical workflow integrated traditional tools of cell and developmental biology to identify, inject/aspirate cells, and collect specimens. ...
This protocol enables the characterization of protein expression in identified cell lineages in embryos of the Xenopus species. Stemming from HRMS, the methodology combines exquisite specificity in molecular identification, capability for multi-protein detection without molecular probes (usually hundreds to thousands of different proteins), and a capability for quantification. Adaptability to classical tools and workflows in cell and developmental (neuro)biology expand HRMS proteomics to exciting applications, i...
The authors declare no competing interests.
We are grateful to Jie Li (University of Maryland, College Park) for valuable discussions on embryonic dissociation and FACS. We thank Vi M. Quach and Camille Lombard-Banek for assistance with sample preparation and data collection in previous studies exemplifying the proteomic applications that are highlighted in this protocol. Parts of this work were supported by the National Science Foundation under award number IOS-1832968 CAREER (to P.N.), the National Institutes of Health under award number R35GM124755 (to P.N.), the University of Maryland-National Cancer Institute Partnership Program (to P.N.), and COSMOS Club Foundation research awards (to A.B.B. and L.R.P.).
Name | Company | Catalog Number | Comments |
Acetonitrile (LC-MS-grade) | Fisher Scientific | A955 | |
Agarose | ThermoFisher Scientific | R0492 | |
Ammonium bicarbonate | Fisher Scientific | A643-500 | |
Analytical Column | Thermo Scientific | 164941 | |
Analytical microbalance | Mettler-Toledo | XSE105DU | |
Automatic peptide fractionation platform | Agilent | 1260 Infinity II | |
Borosilicate Capillaries | Sutter Instruments Co. | B100-50-10 | |
Borosilicate Capillaries (for making Emmitters) | Sutter Instruments | B100-75-10 | |
C18 spin columns (for desalting) | ThermoFisher Scientific | 89870 | |
Camera ro monitor electrospray | Edmund Optics Inc. | EO-2018C | |
Combretastatin A4 | Millipore Sigma | C7744 | |
Commercial CESI system | AB SCIEX | CESI | |
(Cyclohexylamino)-1-propanesulfonic acid (CAPS) | VWR | 97061-492 | |
Cytochalasin D | Millipore Sigma | C8273 | |
Dextran, Alexa Fluor 488; 10,000 MW, Anionic, Fixable | ThermoFisher Scientific | D22910 | |
Diothiothreitol | Fisher Scientific | FERR0861 | |
Dumont #5 Forceps | Fine Science Tools | 11252-30 | |
EDTA | Fisher Scientific | AAJ62786AP | |
Epifluorescence light source | Lumencore | AURA III | |
Eppendorf LoBing microcentrifuge tubes: protein | Fisher Scientific | 13-698-793 | |
Formic acid (LC-MS-grade) | Fisher Scientific | A117-50 | |
Freezer (-20 °C) | Fisher Scientific | 97-926-1 | |
Freezer (-80 °C) | Thermo Scientific | TSX40086A | |
Fused silica capillary | Molex | 1088150596 | |
Heat Block | Benchmark | BSH300 | |
High pressure liquid Chromatography System | ThermoFisher Scientific | Dionex Ultimate 3000 RSLC nanosystem | |
High voltage power supply | Spellman | CZE1000R | |
High-resolution Mass Spectrometer | ThermoFisher Scientific | Orbitrap Fusion Lumos Tribrid Mass Spectrometer | |
HPLC caps | Thermo Scientific | C4013-40A | |
HPLC Vials | Thermo Scientific | C4013-11 | |
Illuminator e.g. Goosenecks | Nikon | C-FLED2 | |
Ingenuity Pathway Analysis | Qiagen | ||
Iodoacetamide | Fisher Scientific | AC122275000 | |
Methanol (LC-MS-grade) | Fisher Scientific | A456 | |
Methanol (LC-MS-grade) | Fisher Scientific | A456-4 | |
Microcapillary puller | Suttor Instruments | P-2000 | |
Microinjector | Warner Instrument, Handem, CT | PLI-100A | |
Micropippette puller | Sutter Instruments Co. | P-1000 | |
MS data analysis software, commercial | ProteomeDiscoverer | ||
MS data analysis software, opensource | MaxQuant | ||
non-idet 40 substitute | Millipore Sigma | 11754599001 | |
Petri dish 60 mm and 80 mm | Fisher Scientific | S08184 | |
Pierce 10 µL bed Zip-tips (for desalting) | ThermoFisher Scientific | 87782 | |
Pierce bicinchoninic acid protein assay kit | ThermoFisher Scientific | 23225 | |
Pierce quantitative colorimetric peptide assay | ThermoFisher Scientific | 23275 | |
Pierce Trypsin Protease (MS Grade) | Fisher Scientific | PI90058 | |
Protein LoBind vials | Eppendorf | 0030108434 , 0030108442 | |
Refrigerated Centrifuge | Eppendorf | 5430R | |
Refrigerated Incubator | Thermo Scientific | PR505755R/3721 | |
sodium isethionate | Millipore Sigma | 220078 | |
sodium pyrophosphate | Sigma Aldrich | 221368-100G | |
Stainless steel BGE vial | Custom-Built | ||
Stainless steel sample vials | Custom-Built | ||
Stereomicroscope (objective 10x) | Nikon | SMZ 1270, SZX18 | |
Sucrose | VWR | 97063-790 | |
Syringe pumps (2) | Harvard Apparatus | 704506 | |
Syringes (gas-tight): 500–1000 µL | Hamilton | 1750TTL | |
Transfer pipettes (Plastic, disposable) | Fisher Scientific | 13-711-7M | |
Trap Column | Thermo Scientific | 164750 | |
Tris-HCl (1 M solution) | Fisher Scientific | AAJ22638AP | |
Vacuum concentrator capable of operation at 4–10 °C | Labconco | 7310022 | |
Vortex-mixer | Benchmark | BS-VM-1000 | |
Water (LC-MS-grade) | Fisher Scientific | W6 | |
Water (LC-MS-grade) | Fisher Scientific | W6 | |
XYZ translation stage | Thorlabs | PT3 | |
XYZ translation stage | Custom-Built |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved