A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Bioengineering
Granular hydrogels are jammed assemblies of hydrogel microparticles (i.e., "microgels"). In the field of biomaterials, granular hydrogels have many advantageous properties, including injectability, microscale porosity, and tunability by mixing multiple microgel populations. Methods to fabricate microgels often rely on water-in-oil emulsions (e.g., microfluidics, batch emulsions, electrospraying) or photolithography, which may present high demands in terms of resources and costs, and may not be compatible with many hydrogels. This work details simple yet highly effective methods to fabricate microgels using extrusion fragmentation and to process them into granular hydrogels useful for biomedical applications (e.g., 3D printing inks). First, bulk hydrogels (using photocrosslinkable hyaluronic acid (HA) as an example) are extruded through a series of needles with sequentially smaller diameters to form fragmented microgels. This microgel fabrication technique is rapid, low-cost, and highly scalable. Methods to jam microgels into granular hydrogels by centrifugation and vacuum-driven filtration are described, with optional post-crosslinking for hydrogel stabilization. Lastly, granular hydrogels fabricated from fragmented microgels are demonstrated as extrusion printing inks. While the examples described herein use photocrosslinkable HA for 3D printing, the methods are easily adaptable for a wide variety of hydrogel types and biomedical applications.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved