A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The present protocol describes a generalized and easy-to-implement scheme for tilted single-particle data collection in cryo-EM experiments. Such a procedure is especially useful for obtaining a high-quality EM map for samples suffering from preferential orientation bias due to adherence to the air-water interface.
Single-particle analysis (SPA) by cryo-electron microscopy (cryo-EM) is now a mainstream technique for high-resolution structural biology. Structure determination by SPA relies upon obtaining multiple distinct views of a macromolecular object vitrified within a thin layer of ice. Ideally, a collection of uniformly distributed random projection orientations would amount to all possible views of the object, giving rise to reconstructions characterized by isotropic directional resolution. However, in reality, many samples suffer from preferentially oriented particles adhering to the air-water interface. This leads to non-uniform angular orientation distributions in the dataset and inhomogeneous Fourier-space sampling in the reconstruction, translating into maps characterized by anisotropic resolution. Tilting the specimen stage provides a generalizable solution to overcoming resolution anisotropy by virtue of improving the uniformity of orientation distributions, and thus the isotropy of Fourier space sampling. The present protocol describes a tilted-stage automated data collection strategy using Leginon, a software for automated image acquisition. The procedure is simple to implement, does not require any additional equipment or software, and is compatible with most standard transmission electron microscopes (TEMs) used for imaging biological macromolecules.
The advent of direct electron detectors over the past decade1,2,3 has spurred an exponential increase in the number of high-resolution structures of macromolecules and macromolecular assemblies solved using single-particle cryo-EM4,5,6. Almost all purified macromolecular species are expected to be amenable to structure determination using cryo-EM, except for the smallest proteins ~10 kDa in size or below7. The amount of starting material needed for grid preparation and structure determination is at least an order of magnitude less than other structure determination techniques, such as nuclear magnetic resonance spectroscopy and X-ray crystallography4,5,6.
However, a principal challenge for structure determination by cryo-EM involves suitable grid preparation for imaging. An extensive study evaluating diverse samples using different vitrification strategies and grids suggested that most approaches for vitrifying samples on cryo-EM grids lead to preferential adherence of macromolecules to the air-water interface8. Such adherence can potentially cause four suboptimal outcomes: (1) the macromolecular sample completely denatures, in which case no successful data collection and processing is possible; (2) the sample partially denatures, in which case it may be possible to obtain structural insights from regions of the macromolecule that are not damaged; (3) the sample retains native structure, but only one set of particle orientations relative to the direction of the electron beam are represented in the images; (4) the sample retains native structure, and some but not all possible particle orientations relative to the direction of the electron beam are represented in the images. For cases (3) and (4), tilted data collection will help with minimizing directional resolution anisotropy affecting the reconstructed cryo-EM map and provides a generalizable solution for a wide variety of samples9. Technically, tilting can also benefit case (2), since the denaturation presumably occurs at the air-water interface and similarly limits the number of distinct orientations represented within the data. The extent of orientation bias in the dataset can potentially be altered by experimenting with solution additives, but a lack of broad applicability hampers these trial-and-error approaches. Tilting the specimen stage at a single optimized tilt angle is sufficient to improve the distribution of orientations by virtue of altering the geometry of the imaging experiment9 (Figure 1). Due to the geometric configuration of the preferentially-oriented sample with respect to the electron beam, for each cluster of preferential orientations, tilting the grid generates a cone of illumination angles with respect to the cluster centroid. Hence, this spreads out the views and consequently improves Fourier space sampling and the isotropy of directional resolution.
There are, in practice, some detriments to tilting the stage. Tilting the specimen stage introduces a focus gradient across the field of view, which may affect the accuracy of contrast transfer function (CTF) estimations. Tilted data collection may also lead to increased beam-induced particle movement caused by increased charging effects when imaging tilted specimens. Grid tilting also leads to an increase in apparent ice thickness, which in turn leads to noisier micrographs and may ultimately impact the resolution of reconstructions5,9,10. It may be possible to overcome these issues by applying advanced computational data-processing schemes that are briefly described in the protocol and discussion sections. Lastly, tilting can lead to increased particle overlap, hindering the subsequent image processing pipeline. Although this can be mitigated to some extent by optimizing on-grid particle concentration, it is nonetheless an important consideration. Here, a simple-to-implement protocol is described for tilted data collection using the Leginon software suite (an automated image acquisition software), available open access and compatible with a broad range of microscopes11,12,13,14. The method requires at least version 3.0 or higher, with versions 3.3 onward containing dedicated improvements to enable tilted data collection. No additional software or equipment is necessary for this protocol. Extensive instructions on computational infrastructure and installation guides are provided elsewhere15.
1. Sample preparation
2. Setting up tilted data collection
3. Data Processing
DPS at 0.3 mg/mL was used to demonstrate imaging at 0°, 30°, and 60° tilts. Data from different tilt angles were collected on the same grid at different grid regions. CTF resolution fits for higher angle tilts tend to be poorer, as was the case when comparing the three datasets in this study. Figure 4 demonstrates comparative representative images and 2D classification averages. Although the protein concentration is unchanged across the different tilt angles, a higher tilt ang...
Preferred particle orientation caused by specimen adherence to the air-water interface is one of the last major bottlenecks to routine high-resolution structure determination using cryo-EM SPA4,5,6. The data collection scheme presented here provides an easy-to-implement strategy for improving the orientation distribution of particles within a dataset. We note that the protocol requires no additional equipment or software and doe...
The authors have nothing to disclose.
We thank Bill Anderson, Charles Bowman, and Jean-Christophe Ducom (TSRI) for help with microscopy, Leginon installations, and data transfer infrastructure. We also thank Gordon Louie (Salk Institute) and Yong Zi Tan (National University of Singapore) for the critical reading of the manuscript. We thank Chris Russo (MRC Laboratory of Molecular Biology, Cambridge) for providing us with the plasmid for expression of DPS. This work was supported by grants from the US National Institutes of Health (U54AI150472, U54 AI170855, and R01AI136680 to DL), the National Science Foundation (NSF MCB-2048095 to DL), the Hearst Foundations (to DL), and Arthur and Julie Woodrow Chair (to J. P. N.). T.S. is supported by an F32 postdoctoral fellowship from the National Institutes of Health (GM148049).
Name | Company | Catalog Number | Comments |
Cryosparc Live v3.1.0+210216 | Structura Biotechnology | ||
DPS protein | Purification adapted from protocol described in K.Naydenova et al IUCrJ. 2019 Nov 1; 6(Pt 6): 1086–1098. | ||
K2 Summit Direct Electron Detector | Gatan | ||
Leginon software suite | C Suloway et al Journal of Structural Biology 151 (1): pp. 41-60. | ||
Manual plunging device | Homemade guillotine-like device for vitrification of EM grids | ||
Talos Arctica | FEI/Thermo Fisher | ||
UltrAufoil R1.2/1.3 300 mesh grids | Quantifoil | N1-A14nAu30-01 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved