Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes establishing a murine colonic organoid system to study the activity and functioning of colonic stem cells in a claudin-7 knockout model.

Abstract

The intestinal epithelium regenerates every 5-7 days, and is controlled by the intestinal epithelial stem cell (IESC) population located at the bottom of the crypt region. IESCs include active stem cells, which self-renew and differentiate into various epithelial cell types, and quiescent stem cells, which serve as the reserve stem cells in the case of injury. Regeneration of the intestinal epithelium is controlled by the self-renewing and differentiating capabilities of these active IESCs. In addition, the balance of the crypt stem cell population and maintenance of the stem cell niche are essential for intestinal regeneration. Organoid culture is an important and attractive approach to studying proteins, signaling molecules, and environmental cues that regulate stem cell survival and functions. This model is less expensive, less time-consuming, and more manipulatable than animal models. Organoids also mimic the tissue microenvironment, providing in vivo relevance. The present protocol describes the isolation of colonic crypts, embedding these isolated crypt cells into a three-dimensional gel matrix system and culturing crypt cells to form colonic organoids capable of self-organization, proliferation, self-renewal, and differentiation. This model allows one to manipulate the environment-knocking out specific proteins such as claudin-7, activating/deactivating signaling pathways, etc.-to study how these effects influence the functioning of colonic stem cells. Specifically, the role of tight junction protein claudin-7 in colonic stem cell function was examined. Claudin-7 is vital for maintaining intestinal homeostasis and barrier function and integrity. Knockout of claudin-7 in mice induces an inflammatory bowel disease-like phenotype exhibiting intestinal inflammation, epithelial hyperplasia, weight loss, mucosal ulcerations, epithelial cell sloughing, and adenomas. Previously, it was reported that claudin-7 is required for intestinal epithelial stem cell functions in the small intestine. In this protocol, a colonic organoid culture system is established to study the role of claudin-7 in the large intestine.

Introduction

Intestinal organoid culture is a three-dimensional (3D) ex vivo system in which stem cells are isolated from the intestinal crypts of primary tissue and plated into a gel matrix1,2. These stem cells are capable of self-renewal, self-organization, and organ functionality2. Organoids mimic the tissue microenvironment and are more similar to in vivo models than two-dimensional (2D) in vitro cell culture models, although less manipulatable than cells3,4. This model eliminates obstacles encountered in 2D mo....

Protocol

All animal experiments and procedures were approved by the East Carolina University (ECU) Animal Care and Use Committee (IACUC) and conducted in compliance with guidelines from the National Institutes of Health and ECU on laboratory animal care and use. Inducible, intestinal-specific claudin-7 knockout mice were generated by crossing C57BL6 claudin-7-flox transgenic mice with Villin-CreERT2 mice19. Male and female mice aged 3 months were used in this study.

1. Rea.......

Representative Results

In order to examine the regulatory effects of claudin-7 on colon stem cells, colonic crypts were isolated from murine colon tissue as described above and shown in Figure 1A. Once the crypts were isolated from the primary tissue, they were plated in a 3D matrix in a 96-well plate to grow for 11 days (Figure 1). Normal healthy crypts will close the lumen and become spheroids by day 2 and eventually begin budding and forming the various epithelial cell types at app.......

Discussion

Organoid culture is an excellent model for studying stem cell function, intestinal physiology, drug discovery, human intestinal diseases, and tissue regeneration and repair7,8,9,10,11,26. While it has many advantages, it can be challenging to establish. Care must be taken in all steps throughout the protocol, but most importa.......

Acknowledgements

This study was funded by NIH DK103166.

....

Materials

NameCompanyCatalog NumberComments
0.09 cubic feet space-saver vacuum desiccator United States Plastic Corp78564anesthesia chamber
0.5 M EDTA pH 8.0InvitrogenAM9261
1.5 mL microcentrifuge tubesThermoFisher69715
15 mL conical centrifuge tubesFisher Scientific14-959-53A
1x Dulbecco’s Phosphate buffered salineGibco14190-144
2-methylbutaneSigma277258
4% paraformaldehydeThermoFisherJ61899.AK
4-hydroxytamoxifen (4OH-TAM)Sigma579002
50 mL conical centrifuge tubesFisher Scientific14-432-22
70 µm nylon cell strainerCorning352350
96 well culture plateGreiner Bio-One655180
B-27 Supplement (50x)Gibco12587-010
Bovine serum albuminFisher ScientificBP1605-100
Claudin-7 anti-murine rabbit antibodyImmuno-Biological Laboratories 18875
Cover glass (24 x 50-1.5)Fisher Scientific12544E
Cryomoldsvwr25608-916
Cultrex RCF BME, Type 2R&D Systems3533-005-02gel matrix
Cy3 anti-rabbit antibodyJackson Immunoresearch111-165-003
Dewar FlaskThomas Scientific1173F61
DMEM High Glucose with L-GlutamineATCC30-2002
EVOS FLoid Imaging SystemThermoFisher4477136
Fluoro-Gel II with DAPIElectron Microscopy Sciences17985-50
GlutaMAX (100x)Gibco35050-061
GlycineJT Baker4059-02
HEPES (1 M) Buffer SolutionGibco15630-080
HoechstThermoFisher62249
In situ cell death detection kit, TMR RedRoche12156792910
IsofluranePivetal07-893-8440
L-WRN MediaHarvard Medical School Gastrointestinal Organoid Derivation and Culture CoreN/A
Mouse surgical kitKent Scientific CorporationINSMOUSEKIT
Murine EGFPeproTech315-09-500UG
N2 Supplement (100x)Gibco17502-048
Optimum cutting temperature (OCT) compound Agar ScientificAGR1180
Penicillin-StreptomycinGibco15140-122
Sequenza Rackvwr10129-584
Sodium CitrateFisher ScientificS-279
SucroseSigmaS9378
Triton X-100SigmaX100
Vacuum filter (0.22 µm; cellulose acetate)Corning430769
Y-27632 dihydrochlorideTocris Bioscience1254

References

  1. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  2. Sato, T., et al.

Explore More Articles

3D CultureColonic CryptsIntestinal Stem CellsEx VivoOrganoid CultureColonMouse ModelClaudin 7Inflammatory Bowel DiseaseColorectal CancerCrypt IsolationEpithelial DissociationCrypt DissociationCell Culture

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved