A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
We describe a protocol to isolate and culture human saphenous vein endothelial cells (hSVECs). We also provide detailed methods to produce shear stress and stretch to study mechanical stress in hSVECs.
Coronary artery bypass graft (CABG) surgery is a procedure to revascularize ischemic myocardium. Saphenous vein remains used as a CABG conduit despite the reduced long-term patency compared to arterial conduits. The abrupt increase of hemodynamic stress associated with the graft arterialization results in vascular damage, especially the endothelium, that may influence the low patency of the saphenous vein graft (SVG). Here, we describe the isolation, characterization, and expansion of human saphenous vein endothelial cells (hSVECs). Cells isolated by collagenase digestion display the typical cobblestone morphology and express endothelial cell markers CD31 and VE-cadherin. To assess the mechanical stress influence, protocols were used in this study to investigate the two main physical stimuli, shear stress and stretch, on arterialized SVGs. hSVECs are cultured in a parallel plate flow chamber to produce shear stress, showing alignment in the direction of the flow and increased expression of KLF2, KLF4, and NOS3. hSVECs can also be cultured in a silicon membrane that allows controlled cellular stretch mimicking venous (low) and arterial (high) stretch. Endothelial cells' F-actin pattern and nitric oxide (NO) secretion are modulated accordingly by the arterial stretch. In summary, we present a detailed method to isolate hSVECs to study the influence of hemodynamic mechanical stress on an endothelial phenotype.
Endothelial cell (EC) dysfunction is a key player in saphenous vein graft failure1,2,3,4. The sustained increase of shear stress and cyclic stretch induces the proinflammatory phenotype of human saphenous vein endothelial cells (hSVECs)3,4,5,6. The underlying molecular pathways are still not fully understood, and standardized protocols for in vitro studies may leverage the efforts for novel insights in the....
Unused segments of saphenous veins were obtained from patients undergoing aortocoronary bypass surgery at the Heart Institute (InCor), University of São Paulo Medical School. All individuals gave informed consent to participate in the study, which was reviewed and approved by the local ethics committee.
1. Isolation, culture, and characterization of primary human saphenous vein endothelial cells (hSVECs)
Typically, adhered ECs can be observed 3-4 days after extraction. hSVECs initially form clusters of cells and display a typical "cobblestone" morphology (Figure 1B). They express the EC markers CD31 (Figure 1C,D) and VE-cadherin (Figure 1D). hSVECs can be easily propagated on a non-coated treated cell culture dish, and they retain the endothelial phenotype in culture up to eight passages.
The saphenous vein segment should have be least 2 cm to successfully isolate hSVECs. Small segments are difficult to handle and tie the ends of the vessel to maintain the collagenase solution to isolate the cells. The reduced luminal surface area does not yield sufficient cells to expand the culture. To minimize the risk of contamination with non-ECs, the manipulation of the saphenous vein segment needs to be very gentle during the entire procedure. It is important to be careful when introducing the pipette tips into the.......
The authors have no conflicts of interest to disclose.
JEK is supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP-INCT-20214/50889-7 and 2013/17368-0] and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (INCT-465586/2014-7 and 309179/2013-0). AAM is supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/11139-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Universal - 407911/2021-9).
....Name | Company | Catalog Number | Comments |
0.25% Trypsin-0.02% EDTA solution | Gibco | 25200072 | |
15 µ slide I 0.4 Luer | Ibidi | 80176 | |
4',6-Diamidino-2-Phenylindole, Dilactate (DAPI) | Thermo Fisher Scientific | D3571 | |
6-wells equibiaxial loading station of 25 mm | Flexcell International Corporation | LS-3000B25.VJW | |
8-well chamber slide with removable well | Thermo Fisher Scientific | 154453 | |
Acetic Acid (Glacial) | Millipore | 100063 | |
Acrylic sheet 1 cm thick | Plexiglass | ||
Anti-CD31 antibody | Abcam | ab24590 | |
Anti-CD31, FITC antibody | Thermo Fisher Scientific | MHCD3101 | |
Anti-VE-cadherin antibody | Cell Signaling | 2500 | |
Bioflex plates collagen I | Flexcell International Corporation | BF3001C | |
Bovine serum albumin solution | Sigma-Aldrich | A8412 | |
Cotton suture EP 3.5 15 x 45 cm | Brasuture | AP524 | |
Cyclophilin forward primer | Thermo Fisher Scientific | Custom designed | |
Cyclophilin reverse primer | Thermo Fisher Scientific | Custom designed | |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D4540 | |
EBM-2 basal medium | Lonza | CC3156 | |
EGM-2 SingleQuots supplements | Lonza | CC4176 | |
Fetal bovine serum (FBS) | Thermo Fisher Scientific | 2657-029 | |
Flexcell FX-5000 tension system | Flexcell International Corporation | FX-5000T | |
Fluoromount aqueous mounting medium | Sigma-Aldrich | F4680 | |
Gelatin from porcine skin | Sigma-Aldrich | G2500 | |
Glycerol | Sigma-Aldrich | G5516 | |
Goat anti-Mouse IgG Alexa Fluor 488 | Thermo Fisher Scientific | A11001 | |
Goat anti-Rabbit IgG Alexa Fluor 488 | Thermo Fisher Scientific | A11008 | |
Heparin sodium from porcine intestinal mucosa 5000 IU/mL | Blau Farmacêutica | SKU 68027 | |
Ibidi pump system (Pump + Fluidic Unit) | Ibidi | 10902 | |
KLF2 forward primer | Thermo Fisher Scientific | Custom designed | |
KLF2 reverse primer | Thermo Fisher Scientific | Custom designed | |
KLF4 forward primer | Thermo Fisher Scientific | Custom designed | |
KLF4 reverse primer | Thermo Fisher Scientific | Custom designed | |
NOA 280 nitric oxide analyzer | Sievers Instruments | NOA-280i-1 | |
NOS3 forward primer | Thermo Fisher Scientific | Custom designed | |
NOS3 reverse primer | Thermo Fisher Scientific | Custom designed | |
Paraformaldehyde (PFA) | Sigma-Aldrich | 158127 | |
Perfusion set 15 cm, ID 1.6 mm, red, 10 mL reservoirs | Ibidi | 10962 | |
Phalloidin - Alexa Fluor 488 | Thermo Fisher Scientific | A12379 | |
Phalloidin - Alexa Fluor 568 | Thermo Fisher Scientific | A12380 | |
Phosphate buffered saline (PBS), pH 7.4 | Thermo Fisher Scientific | 10010031 | |
Potassium Iodide | Sigma-Aldrich | 221945 | |
QuanTitec SYBR green PCR kit | Qiagen | 204143 | |
QuantStudio 12K flex platform | Applied Biosystems | 4471087 | |
RNeasy micro kit | Quiagen | 74004 | |
Slide glass (24 mm x 60 mm) | Knittel Glass | VD12460Y1D.01 | |
Sodium nitrite | Sigma-Aldrich | 31443 | |
SuperScript IV first-strand synthesis system | Thermo Fisher Scientific | 18091200 | |
Triton X-100 | Sigma-Aldrich | T8787 | |
Trypan blue stain 0.4% | Gibco | 15250-061 | |
Type II collagenase from Clostridium histolyticum | Sigma-Aldrich | C6885 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved