A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol demonstrating the installation and use of a bioinformatics pipeline to analyze chimeric RNA sequencing data used in the study of in vivo RNA:RNA interactions.
An understanding of the in vivo gene regulatory interactions of small noncoding RNAs (sncRNAs), such as microRNAs (miRNAs), with their target RNAs has been advanced in recent years by biochemical approaches which use cross-linking followed by ligation to capture sncRNA:target RNA interactions through the formation of chimeric RNAs and subsequent sequencing libraries. While datasets from chimeric RNA sequencing provide genome-wide and substantially less ambiguous input than miRNA prediction software, distilling this data into meaningful and actionable information requires additional analyses and may dissuade investigators lacking a computational background. This report provides a tutorial to support entry-level computational biologists in installing and applying a recent open-source software tool: Small Chimeric RNA Analysis Pipeline (SCRAP). Platform requirements, updates, and an explanation of pipeline steps and manipulation of key user-input variables is provided. Reducing a barrier for biologists to gain insights from chimeric RNA sequencing approaches has the potential to springboard discovery-based investigations of regulatory sncRNA:target RNA interactions in multiple biological contexts.
Small noncoding RNAs are highly studied for their post-transcriptional roles in coordinating expression from suites of genes in diverse processes such as differentiation and development, signal processing, and disease1,2,3. The ability to accurately determine the target transcripts of gene-regulatory small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), is of importance to studies of RNA biology at both basic and translational levels. Bioinformatic algorithms that exploit anticipated complementarity between the miRNA seed sequence and its potential targets have been frequently used for the prediction of miRNA:target RNA interactions. While these bioinformatic algorithms have been successful, they also can harbor both false positive and false negative results, as has been reviewed elsewhere4,5,6. Recently, several biochemical approaches have been designed and implemented that allow unambiguous and semiquantitative determination of in vivo sncRNA:target RNA interactions by in vivo crosslinking and ensuing incorporation of a ligation step to physically attach the sncRNA to its target to form a single chimeric RNA4,5,7,8,9,10. Subsequent preparation of sequencing libraries from the chimeric RNAs allows assessment of the sncRNA:target RNA interactions by computational processing of the sequencing data. This video provides a tutorial for installing and using a computational pipeline termed small chimeric RNA analysis pipeline (SCRAP), which is designed to allow robust and reproducible analysis of sncRNA:target RNA interactions from chimeric RNA sequencing libraries6.
A goal of this tutorial is to assist investigators in avoiding excessive reliance on purely predictive bioinformatic algorithms by lowering barriers to the analysis of data generated through biochemical approaches providing chimeric molecular readouts of sncRNA:target RNA interactions. This tutorial provides practical steps and tips to guide entry-level computational scientists through the use of a pipeline, SCRAP, developed for analyzing chimeric RNA sequencing data, which can be generated by several existing biochemical protocols, including crosslinking, ligation, and sequencing of hybrids (CLASH) and covalent ligation of endogenous Argonaute-bound RNAs- crosslinking and immunoprecipitation (CLEAR-CLIP)7,9.
The use of SCRAP offers several advantages for the analysis of chimeric RNA sequencing data, compared to other computational pipelines6. One salient advantage is its extensive annotation and the incorporation of call-outs to well-supported and routinely updated bioinformatic scripts within the pipeline, in comparison to alternative pipelines that often rely on custom and/or unsupported scripts for steps in the pipeline. This feature lends stability to SCRAP, making it more worthwhile for researchers to familiarize themselves with the pipeline and to incorporate its use into their workflow. SCRAP has also been demonstrated to outperform alternative pipelines in calling peaks of sncRNA:target RNA interactions and to have cross-platform functionality, as detailed in a prior publication6.
By the end of this tutorial, users will be able to (i) know platform requirements for SCRAP and install SCRAP pipelines, (ii) install reference genomes and set up command line parameters for SCRAP, and (iii) understand peak calling criteria and perform peak calling and peak annotation.
This video will describe in practical detail how researchers studying RNA biology may install and optimally use the computational pipeline, SCRAP, to analyze sncRNA interactions with target RNAs, such as messenger RNAs, in chimeric RNA-sequencing data obtained through one of the discussed biochemical approaches to sequencing library preparation.
SCRAP is a command line utility. Generally, following the guide below, the user will need to (i) download and install SCRAP (https://github.com/Meffert-Lab/SCRAP), (ii) Install reference genomes and run SCRAP, and (iii) perform peak calling and annotation.
Further details of the computational steps in this procedure can be found at https://github.com/Meffert-Lab/SCRAP. This article will provide the setup and background information to allow investigators with entry-level computational skills to install, optimize, and use SCRAP on chimeric RNA sequencing library datasets.
NOTE: The protocol will begin with downloading and installing software required to analyze chimeric RNA sequencing libraries using SCRAP.
1. Installation
2. Running SCRAP
3. Peak calling and annotation
4. Visualizing the data
NOTE: All steps for analysis using SCRAP are now completed. For visualizing the data, several approaches are recommended:
Results for sncRNA:target RNA detected by a modified version of SCRAP (SCRAP release 2.0, which implements modifications for rRNA filtering) on previously published sequencing datasets prepared using CLEAR-CLIP9 is shown in Figure 2 and Table 1. Users can appreciate the decrease in the relative fraction miRNA interactions with intron regions which occurs following the isolation of high-confidence interactions by peak calling in SCRAP. Additional data ...
This protocol on the use of SCRAP pipeline for analysis of sncRNA:target RNA interactions is designed to assist investigators who are entering into computational analysis. Completion of the tutorial is expected to guide investigators with entry-level or greater computational experience through the steps required for installation and use of this pipeline and its application to analyze data gained from chimeric RNA sequencing libraries. Steps critical to the completion of this protocol include correct reference installatio...
The authors have nothing to disclose.
We thank members of the Meffert laboratory for helpful discussions, including BH Powell and WT Mills IV, for critical feedback on describing the installation and implementation of the pipeline. This work was supported by a Braude Foundation award, the Maryland Stem Cell Research Fund Launch Program, the Blaustein Endowment for Pain Research and Education award, and NINDS RO1NS103974 and NIMH RO1MH129292 to M.K.M.
Name | Company | Catalog Number | Comments |
Genomes | UCSC Genome browser | N/A | https://genome.ucsc.edu/ or https://www.ncbi.nlm.nih.gov/data-hub/genome/ |
Linux | Linux | Ubuntu 20.04 or 22.04 LTS recommended | |
Mac | Apple | Mac OSX (>11) | |
Platform setup | GitHub | N/A | https://github.com/Meffert-Lab/SCRAP/blob/main/PLATFORM-SETUP.md] |
SCRAP pipeline | GitHub | N/A | https://github.com/Meffert-Lab/SCRAP |
Unix shell | Unix operating system | bash >=5.0 | |
Unix shell | Unix operating system | zsh (5.9 recommended) | |
Windows | Windows | WSL Ubuntu 20.04 or 22.04 LTS |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved