3.9 : Non-equilibrium in the Cell
An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.
If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.
Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.
This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.
Bölümden 3:
Now Playing
3.9 : Non-equilibrium in the Cell
Enerji ve Kataliz
4.4K Görüntüleme Sayısı
3.1 : Termodinamiğin Birinci Yasası
Enerji ve Kataliz
5.9K Görüntüleme Sayısı
3.2 : Termodinamiğin İkinci Yasası
Enerji ve Kataliz
5.3K Görüntüleme Sayısı
3.3 : Hücre İçindeki Entalpi
Enerji ve Kataliz
6.0K Görüntüleme Sayısı
3.4 : Hücre İçindeki Entropi
Enerji ve Kataliz
10.7K Görüntüleme Sayısı
3.5 : Serbest Enerjiye Giriş
Enerji ve Kataliz
8.5K Görüntüleme Sayısı
3.6 : Hücrede Endergonik ve Ekzergonik Reaksiyonlar
Enerji ve Kataliz
15.2K Görüntüleme Sayısı
3.7 : Denge Bağlanma Sabiti ve Bağlanma Kuvveti
Enerji ve Kataliz
9.2K Görüntüleme Sayısı
3.8 : Serbest Enerji ve Denge
Enerji ve Kataliz
6.3K Görüntüleme Sayısı
3.10 : Organik Moleküllerin Oksidasyonu ve İndirgenmesi
Enerji ve Kataliz
6.7K Görüntüleme Sayısı
3.11 : Enzimlere Giriş
Enerji ve Kataliz
17.8K Görüntüleme Sayısı
3.12 : Enzimler ve Aktivasyon Enerjisi
Enerji ve Kataliz
12.0K Görüntüleme Sayısı
3.13 : Enzim Kinetiğine Giriş
Enerji ve Kataliz
20.1K Görüntüleme Sayısı
3.14 : Devir Sayısı ve Katalitik Verimlilik
Enerji ve Kataliz
10.2K Görüntüleme Sayısı
3.15 : Katalitik Olarak Mükemmel Enzimler
Enerji ve Kataliz
4.0K Görüntüleme Sayısı
See More