로그인

An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.

If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.

Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.

This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.

Tags
Artificial IntelligenceAI Writing AssistantContent GenerationCopywritingAI generated Content

장에서 3:

article

Now Playing

3.9 : Non-equilibrium in the Cell

Energy and Catalysis

4.0K Views

article

3.1 : 열역학 제1법칙

Energy and Catalysis

5.2K Views

article

3.2 : 열역학 제2법칙

Energy and Catalysis

4.8K Views

article

3.3 : 세포 내 엔탈피

Energy and Catalysis

5.6K Views

article

3.4 : 세포 내의 엔트로피

Energy and Catalysis

10.1K Views

article

3.5 : 자유 에너지 소개

Energy and Catalysis

7.9K Views

article

3.6 : 세포 내에서의 엔더곤 및 엑세르고닉 반응

Energy and Catalysis

13.9K Views

article

3.7 : 평형 결합 상수와 결합 강도

Energy and Catalysis

8.9K Views

article

3.8 : 자유 에너지와 평형

Energy and Catalysis

5.9K Views

article

3.10 : 유기 분자의 산화 및 환원

Energy and Catalysis

5.7K Views

article

3.11 : 효소 소개

Energy and Catalysis

16.4K Views

article

3.12 : 효소와 활성화 에너지

Energy and Catalysis

11.2K Views

article

3.13 : Introduction to Enzyme Kinetics(효소 반응속도학 소개)

Energy and Catalysis

19.2K Views

article

3.14 : Turnover Number and Catalytic Efficiency(회전율 수치와 촉매 효율)

Energy and Catalysis

9.6K Views

article

3.15 : 촉매적으로 완벽한 효소

Energy and Catalysis

3.8K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유