S'identifier

An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.

If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.

Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.

This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.

Tags
Artificial IntelligenceAI Writing AssistantContent GenerationCopywritingAI generated Content

Du chapitre 3:

article

Now Playing

3.9 : Non-equilibrium in the Cell

Énergie et catalyse

4.0K Vues

article

3.1 : La première loi de la thermodynamique

Énergie et catalyse

5.2K Vues

article

3.2 : La seconde loi de la thermodynamique

Énergie et catalyse

4.8K Vues

article

3.3 : Enthalpie au sein de la cellule

Énergie et catalyse

5.5K Vues

article

3.4 : Entropie au sein de la cellule

Énergie et catalyse

10.1K Vues

article

3.5 : Une introduction à l'enthalpie libre

Énergie et catalyse

7.9K Vues

article

3.6 : Réactions endergoniques et exergoniques dans la cellule

Énergie et catalyse

13.9K Vues

article

3.7 : La constante d'équilibre des liaisons et la force des liaisons

Énergie et catalyse

8.9K Vues

article

3.8 : Énergie libre et équilibre

Énergie et catalyse

5.9K Vues

article

3.10 : Oxydation et réduction des molécules organiques

Énergie et catalyse

5.6K Vues

article

3.11 : Introduction aux enzymes

Énergie et catalyse

16.4K Vues

article

3.12 : Enzymes et énergie d'activation

Énergie et catalyse

11.1K Vues

article

3.13 : Introduction à la cinétique enzymatique

Énergie et catalyse

19.2K Vues

article

3.14 : Constante catalytique et efficacité

Énergie et catalyse

9.6K Vues

article

3.15 : Enzymes parfaites

Énergie et catalyse

3.8K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.