3.9 : Ungleichgewicht in der Zelle
An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.
If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.
Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.
This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.
Aus Kapitel 3:
Now Playing
3.9 : Ungleichgewicht in der Zelle
Energie und Katalyse
4.5K Ansichten
3.1 : Der erste Hauptsatz der Thermodynamik
Energie und Katalyse
5.9K Ansichten
3.2 : Der zweite Hauptsatz der Thermodynamik
Energie und Katalyse
5.4K Ansichten
3.3 : Enthalpie in der Zelle
Energie und Katalyse
6.0K Ansichten
3.4 : Entropie innerhalb der Zelle
Energie und Katalyse
10.7K Ansichten
3.5 : Eine Einführung in die Freie Energie
Energie und Katalyse
8.5K Ansichten
3.6 : Endergone und exergone Reaktionen in der Zelle
Energie und Katalyse
15.2K Ansichten
3.7 : Die Gleichgewichtsbindungskonstante und die Bindungsstärke
Energie und Katalyse
9.2K Ansichten
3.8 : Freie Energie und Gleichgewicht
Energie und Katalyse
6.3K Ansichten
3.10 : Oxidation und Reduktion von organischen Molekülen
Energie und Katalyse
6.7K Ansichten
3.11 : Einführung in Enzyme
Energie und Katalyse
17.9K Ansichten
3.12 : Enzyme und Aktivierungsenergie
Energie und Katalyse
12.0K Ansichten
3.13 : Einführung in die Enzymkinetik
Energie und Katalyse
20.1K Ansichten
3.14 : Wechselzahl und katalytische Effizienz
Energie und Katalyse
10.2K Ansichten
3.15 : Katalytisch perfekte Enzyme
Energie und Katalyse
4.0K Ansichten
See More