JoVE Logo

Accedi

An important concept in studying metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction. The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively. Reactants within a closed system will undergo chemical reactions in both directions until they reach a state of equilibrium, which is one of the lowest possible free energy and a state of maximal entropy. To push the reactants and products away from a state of equilibrium requires energy. Either reactants or products must be added, removed, or changed.

If a cell were a closed system, its chemical reactions would reach equilibrium, and it would die because there would be insufficient free energy left to perform the necessary work to maintain life. In a living cell, chemical reactions are constantly moving towards equilibrium, but never reach it. This is because a living cell is an open system. Materials pass in and out, the cell recycles the products of certain chemical reactions into other reactions, and there is never chemical equilibrium. In this way, living organisms are in a constant energy-requiring, uphill battle against equilibrium and entropy. This constant energy supply ultimately comes from sunlight, which produces nutrients in the photosynthesis process.

Steady state refers to the relatively stable internal environment required to maintain life. In order to function properly, cells require appropriate conditions such as proper temperature, pH, and appropriate concentration of diverse chemicals. These conditions may, however, change from one moment to the next. Organisms are able to maintain homeostatic internal conditions within a narrow range almost constantly, despite environmental changes, by activation of regulatory mechanisms. For example, an organism needs to regulate body temperature through the thermoregulation process.

This text is adapted from Openstax, Biology 2e, Section 6.2 Potential, Kinetic, Free, and Activation Energy Section and 1.2 Themes and Concepts of Biology.

Tags

Artificial IntelligenceAI Writing AssistantContent GenerationCopywritingAI generated Content

Dal capitolo 3:

article

Now Playing

3.9 : Non-equilibrium in the Cell

Energy and Catalysis

4.1K Visualizzazioni

article

3.1 : Il Primo F.L. della Termodinamica

Energy and Catalysis

5.3K Visualizzazioni

article

3.2 : Il secondo principio della termodinamica

Energy and Catalysis

5.0K Visualizzazioni

article

3.3 : Entalpia all'interno della cellula

Energy and Catalysis

5.7K Visualizzazioni

article

3.4 : Entropia all'interno della cellula

Energy and Catalysis

10.2K Visualizzazioni

article

3.5 : Un'introduzione all'energia libera

Energy and Catalysis

8.0K Visualizzazioni

article

3.6 : Reazioni endergoniche ed esoergoniche in cellula

Energy and Catalysis

14.3K Visualizzazioni

article

3.7 : La costante di legame all'equilibrio e la forza di legame

Energy and Catalysis

8.9K Visualizzazioni

article

3.8 : Energia libera ed equilibrio

Energy and Catalysis

6.0K Visualizzazioni

article

3.10 : Ossidazione e riduzione di molecole organiche

Energy and Catalysis

5.9K Visualizzazioni

article

3.11 : Introduzione agli enzimi

Energy and Catalysis

16.7K Visualizzazioni

article

3.12 : Enzimi ed energia di attivazione

Energy and Catalysis

11.4K Visualizzazioni

article

3.13 : Introduzione alla cinetica enzimatica

Energy and Catalysis

19.4K Visualizzazioni

article

3.14 : Numero di fatturato ed efficienza catalitica

Energy and Catalysis

9.7K Visualizzazioni

article

3.15 : Enzimi cataliticamente perfetti

Energy and Catalysis

3.8K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati