Imagine a rigid body that is rotating at an angular velocity of ω within an inertial frame of reference. Along with this, picture a second rotating frame that is attached to the body itself. This frame moves along with the body and possesses an angular velocity of Ω. The total moment about the center of mass is calculated by adding the rate of change of angular momentum about the center of mass in relation to the rotating frame and the cross-product of the body's angular velocity and its angular momentum.

Now, consider a situation where the angular velocity of these rotating axes equals the angular velocity of the body itself. In such a scenario, the moments and product of inertia concerning the rotating axes will remain constant. Recalling the scalar components of the angular momentum and using these, one can express the equation for the total moment in terms of scalar components.

If one chooses the rotating axes as the principle axes of inertia, the product of the inertia term disappears. This simplification results in a more manageable scalar form of the total moment equation. These principles and equations constitute Euler's equations of motion for rotating bodies. These equations provide valuable insights into the dynamics of rotating rigid bodies, enabling us to understand and predict their behavior under various conditions.

Etiketler
Euler Equations Of MotionRigid BodyAngular VelocityInertial FrameCenter Of MassAngular MomentumMomentsProduct Of InertiaRotating AxesPrinciple AxesDynamicsRotating Bodies

Bölümden 16:

article

Now Playing

16.9 : Euler Equations of Motion

3-Dimensional Kinetics of a Rigid Body

138 Görüntüleme Sayısı

article

16.1 : Moments and Product of Inertia

3-Dimensional Kinetics of a Rigid Body

295 Görüntüleme Sayısı

article

16.2 : Inertia Tensor

3-Dimensional Kinetics of a Rigid Body

191 Görüntüleme Sayısı

article

16.3 : Moment of Inertia about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

177 Görüntüleme Sayısı

article

16.4 : Angular Momentum about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

120 Görüntüleme Sayısı

article

16.5 : Angular Momentum and Principle Axes of Inertia

3-Dimensional Kinetics of a Rigid Body

129 Görüntüleme Sayısı

article

16.6 : Principle of Impulse and Moment

3-Dimensional Kinetics of a Rigid Body

100 Görüntüleme Sayısı

article

16.7 : Kinetic Energy for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

136 Görüntüleme Sayısı

article

16.8 : Equation of Motion for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

175 Görüntüleme Sayısı

article

16.10 : Torque Free Motion

3-Dimensional Kinetics of a Rigid Body

362 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır