Imagine a rigid body that is rotating at an angular velocity of ω within an inertial frame of reference. Along with this, picture a second rotating frame that is attached to the body itself. This frame moves along with the body and possesses an angular velocity of Ω. The total moment about the center of mass is calculated by adding the rate of change of angular momentum about the center of mass in relation to the rotating frame and the cross-product of the body's angular velocity and its angular momentum.

Now, consider a situation where the angular velocity of these rotating axes equals the angular velocity of the body itself. In such a scenario, the moments and product of inertia concerning the rotating axes will remain constant. Recalling the scalar components of the angular momentum and using these, one can express the equation for the total moment in terms of scalar components.

If one chooses the rotating axes as the principle axes of inertia, the product of the inertia term disappears. This simplification results in a more manageable scalar form of the total moment equation. These principles and equations constitute Euler's equations of motion for rotating bodies. These equations provide valuable insights into the dynamics of rotating rigid bodies, enabling us to understand and predict their behavior under various conditions.

Tags
Euler Equations Of MotionRigid BodyAngular VelocityInertial FrameCenter Of MassAngular MomentumMomentsProduct Of InertiaRotating AxesPrinciple AxesDynamicsRotating Bodies

Aus Kapitel 16:

article

Now Playing

16.9 : Euler Equations of Motion

3-Dimensional Kinetics of a Rigid Body

137 Ansichten

article

16.1 : Momente und Trägheitsprodukt

3-Dimensional Kinetics of a Rigid Body

283 Ansichten

article

16.2 : Trägheits-Tensor

3-Dimensional Kinetics of a Rigid Body

187 Ansichten

article

16.3 : Trägheitsmoment um eine beliebige Achse

3-Dimensional Kinetics of a Rigid Body

175 Ansichten

article

16.4 : Drehimpuls um eine beliebige Achse

3-Dimensional Kinetics of a Rigid Body

119 Ansichten

article

16.5 : Drehimpuls und prinzipielle Trägheitsachsen

3-Dimensional Kinetics of a Rigid Body

129 Ansichten

article

16.6 : Prinzip von Impuls und Moment

3-Dimensional Kinetics of a Rigid Body

93 Ansichten

article

16.7 : Kinetische Energie für einen starren Körper

3-Dimensional Kinetics of a Rigid Body

130 Ansichten

article

16.8 : Bewegungsgleichung für einen starren Körper

3-Dimensional Kinetics of a Rigid Body

168 Ansichten

article

16.10 : Drehmoment Freie Bewegung

3-Dimensional Kinetics of a Rigid Body

356 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten