Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
This article demonstrates surgical procedures of gastroesophageal reflux with mice. These models are useful tools for research on mechanisms and treatment of gastroesophageal reflux disease and potentially Barrett’s esophagus and esophageal adenocarcinoma.
Multiple surgical procedures have been reported to induce gastroesophageal reflux in animals. Herein, we report three surgical models with mice aiming to induce reflux of gastric contents, duodenal contents or mixed contents. Surgical procedures and general principles have been described in detail. A researcher with surgical experience should be able to grasp the technique after a short period of practice. After surgery, most mice can survive and develop reflux esophagitis similar to that in humans. However, it should be noted that histological differences between mouse and human esophagus are the inherent limitations of these surgical models. If used for research on Barrett’s esophagus and adenocarcinoma, these procedures may need to be combined with genetic modifications.
Gastroesophageal reflux disease (GERD) is a chronic disorder caused by the prolonged exposure of distal esophagus to gastric or gastroduodenal contents1. Prolonged exposure to these noxious refluxates impairs the intrinsic defenses within the esophageal epithelium and thus results in esophagitis2. Barrett’s esophagus arises in the setting of chronic reflux, and is a premalignant lesion with increased risk of esophageal adenocarcinoma3,4. Despite the clinical importance, the mechanisms of GERD, Barrett’s esophagus and adenocarcinoma have not been well understood.
Animal models are essential for research on etiology, pathology, molecular mechanisms, prevention and treatment of human diseases. Up to date, various animal models of GERD, Barrett’s esophagus and adenocarcinoma have been developed using model animals5,6. Mouse esophagus is lined with stratified squamous epithelium which is histologically similar to that in human esophagus. Although a mouse esophagus is different from human esophagus in terms of keratinization and the absence of submucosal glands, the mouse is still an appealing model animal because of its relatively low cost of maintenance and its potential of sophisticated genetic modifications. Two approaches are commonly used to model GERD, Barrett’s esophagus and adenocarcinoma in mice: reflux surgery and genetic modification. Reflux surgery is the best way to induce reflux and genetic modifications mimics molecular alterations5,7. Reflux surgery can be combined with genetic modifications to further understand disease mechanisms8.
Many surgical procedures have been reported by us and others6,9: (1) gastric reflux: pyloric ligation, pyloric constriction with forestomach ligation, Wendel cardioplasty, and esophagogastric anastomosis; (2) mixed reflux: esophagogastroduodenal anastomosis, esophagoduodenostomy (or esophagojejunostomy); (3) duodenal reflux: esophagogastroduodenal anastomosis plus gastrectomy; (4) reflux of chemical components: bilious reflux, pancreatic reflux, esophageal perfusion; and (5) esophageal transplantation5. Recently a microsurgical mouse model was reported to produce jejunal reflux via an esophagojejunostomy with magnets10. These surgical models have advantages over in vitro cell culture or organotypic culture models. In vitro, esophageal cells cannot tolerate a medium with high acidity or high concentrations of bile acids. Unconjugated bile acids which are commonly used to produce changes in esophageal epithelial cells in vitro are usually not present in the duodenal refluxate in vivo. Thus conclusions drawn from such in vitro studies should be taken with caution.
Surgery on the mouse esophagus remains a technical challenge because of its small size. A low rate of postoperative survival does not allow experiments which require certain sample size to reach statistically sound conclusions. In the past we have successfully developed and characterized surgical models of gastric reflux, mixed reflux, duodenal reflux with mice in long-term experiments9,11,12. We have also provided consultation to several other groups in their mouse surgery. Herein, we describe three surgical procedures in mice in order to help the community to establish these models in their labs.
Tüm hayvan deneyleri Kurumsal Hayvan Bakım ve Kullanım Kurulu tarafından onaylanmıştır.
1. Fare Hazırlık
2. Mide cezir modeli (Şekil 1B)
3. Karışık Reflü Modeli (Şekil 1C)
4. Duodenal Reflü Modeli (Şekil 1D)
5. Post-cerrahi tedavi
Çoğu fareler (>% 95) ameliyat yaşayabilir. Perioperatif dönemde, önde gelen ölüm nedenleri anestezik dozda, kanama ve bilinmeyen nedenler sayılabilir.
Ameliyattan sonra dört hafta,> duodenal reflü mide reflü ya da karışık reflü ve>% 80 farelerin% 90 fareler yaşayabilir. Bu dönemde, fareler başta özofagus darlığı ve yemek için yetersizlik ölmektedir. Bu fareler ağır stres (kambur duruş, hareketsizlik, kusma, batık gözler, seslendirme, vs.) belirt...
Çeşitli cerrahi modeller kemiricilerde mide, duodenum ve karışık reflüyü taklit etmek kurulmuştur. Burada tarif edilen bu üç prosedür sonrası hayatta kalma makul fiyatlar ile uzun süreli deneyler için de uygundur. Cerrahi deneyime sahip bir araştırmacı uygulama kısa bir süre sonra teknik kavramak gerekir.
Kanama cerrahi, karaciğer, mide, ve kan damarlarının yanlışlıkla zarar arasında bağ dokularının ayrılması sırasında karaciğer laserasyon önce anestezik in...
One of the authors (XC) received funding that was provided by Takeda Pharmaceutical Company Ltd which supports basic research associated with gastroesophageal reflux disease. None of the reagents or instruments used in this article is produced by this company.
We are supported by research grants from the National Natural Science Foundation of China (NO. 81400590), National Institutes of Health (U54 CA156735) and Takeda Pharmaceutical Company Ltd. (MA-NC-D-156).
Name | Company | Catalog Number | Comments |
Dumont #1 Forceps Dumostar Tip | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Micro Clip Applying Forceps 5.5" | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Bonn Scissors 3.5" Straight 15 mm Sharp/Sharp Tungsten Carbide Blades | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Operating Scissors 5.5" Straight Sharp/Sharp SureCut | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
4-0 Silk Black Braid 100 Yard Spool | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Surgeon's Needle 1/2 Circle Cutting Edge Size 12 (25 mm Chord Length) Pack 12 | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Halsey Needle Holder 5" Smooth | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Micro Needle Holder 5.125" Curved Lock .6 mm | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Reflex 9 mm Wound Clip Applier | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
Reflex 9 mm Wound Clips Box Of 100 | Roboz Surgical Instrument Co. (Gaithersburg, MD) | ||
PRONOVA Poly (hexafluoropropylene-VDF) Suture 8-0 | Ethicon US, LLC | ||
Ringer's solution | Henry Schein, Inc. | ||
ketamine | Henry Schein, Inc. | ||
xylazine | Henry Schein, Inc. |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır