Sign In

12.7 : Preparation of Aldehydes and Ketones from Alcohols, Alkenes, and Alkynes

Aldehydes and ketones are prepared from alcohols, alkenes, and alkynes via different reaction pathways. Alcohols are the most commonly used substrates for synthesizing aldehydes and ketones. The conversion of alcohol to aldehyde, which involves the oxidation process, depends on the class of the alcohol used and the strength of the oxidizing agent. For instance, primary alcohol will form an aldehyde when treated with a weak oxidizing agent; however, it gets over-oxidized to a carboxylic acid in the presence of a strong oxidizing agent. Hence, a mild oxidant like pyridinium chlorochromate is used to convert primary alcohols to aldehydes.

Similarly, Swern and Dess–Martin oxidations, which employ weaker oxidizing agents, convert primary alcohols to aldehydes. The strength of the oxidizing agent is irrelevant when converting secondary alcohol to a ketone. Both mild and strong oxidants give ketones from secondary alcohols.

Unsaturated hydrocarbons like alkenes undergo an ozonolysis reaction to give aldehydes and ketones. The product formed depends on the substitution present across the double bond in an alkene. A monosubstituted alkene forms formaldehyde and another aldehyde molecule. However, disubstitution gives rise to two cases. A 1,1-disubstituted alkene upon ozonolysis forms a mixture of formaldehyde and ketone, while a 1,2-disubstituted alkene yields a mixture of aldehydes. Both aldehydes and ketones are formed when trisubstituted alkenes undergo ozonolysis, while tetrasubstituted alkenes form ketones exclusively.

Alkynesalso form aldehydes and ketones under hydroboration-oxidation and acid-catalyzed hydration reaction conditions. The hydroboration-oxidation reaction favors anti-Markovnikov’s addition. Hence terminal alkynes form aldehydes, and internal alkynesyield ketones. On the other hand, the acid-catalyzed hydration reaction follows Markonikov’s addition, and thus both terminal and internal alkynes generateketones.

Tags
AlcoholAldehydeKetoneOxidationOzonolysisHydroboration oxidationAcid catalyzed HydrationPrimary AlcoholSecondary AlcoholAlkeneAlkyneSwern OxidationDess Martin Oxidation

From Chapter 12:

article

Now Playing

12.7 : Preparation of Aldehydes and Ketones from Alcohols, Alkenes, and Alkynes

Aldehydes and Ketones

2.9K Views

article

12.1 : Structures of Aldehydes and Ketones

Aldehydes and Ketones

6.6K Views

article

12.2 : IUPAC Nomenclature of Aldehydes

Aldehydes and Ketones

4.1K Views

article

12.3 : IUPAC Nomenclature of Ketones

Aldehydes and Ketones

4.6K Views

article

12.4 : Common Names of Aldehydes and Ketones

Aldehydes and Ketones

3.0K Views

article

12.5 : IR and UV–Vis Spectroscopy of Aldehydes and Ketones

Aldehydes and Ketones

4.6K Views

article

12.6 : NMR Spectroscopy and Mass Spectrometry of Aldehydes and Ketones

Aldehydes and Ketones

3.2K Views

article

12.8 : Preparation of Aldehydes and Ketones from Nitriles and Carboxylic Acids

Aldehydes and Ketones

3.0K Views

article

12.9 : Preparation of Aldehydes and Ketones from Carboxylic Acid Derivatives

Aldehydes and Ketones

2.2K Views

article

12.10 : Nucleophilic Addition to the Carbonyl Group: General Mechanism

Aldehydes and Ketones

3.5K Views

article

12.11 : Aldehydes and Ketones with Water: Hydrate Formation

Aldehydes and Ketones

2.7K Views

article

12.12 : Aldehydes and Ketones with Alcohols: Hemiacetal Formation

Aldehydes and Ketones

3.9K Views

article

12.13 : Protecting Groups for Aldehydes and Ketones: Introduction

Aldehydes and Ketones

4.9K Views

article

12.14 : Acetals and Thioacetals as Protecting Groups for Aldehydes and Ketones

Aldehydes and Ketones

3.5K Views

article

12.15 : Aldehydes and Ketones with HCN: Cyanohydrin Formation Overview

Aldehydes and Ketones

2.3K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved