Sign In

16.4 : π Molecular Orbitals of the Allyl Cation and Anion

An allyl group is a three-carbon conjugated system where the sp³-hybridized allylic carbon is bonded to a CH=CH2group via a single bond. Allyl anions can be obtained by treating propene with a strong base that can deprotonate methyl groups. Allyl cations are formed as intermediates during substitution reactions involving allylic halides. In both cases, the hybridization of the allylic carbon changes from sp3 to sp2, giving rise to a carbon chain with three sp2-hybridized carbons, each with an unhybridized p orbital.

A linear combination of the three atomic p orbitals gives three molecular orbitals, ψ1, ψ2, and ψ3. ψ1 is the bonding molecular orbital, ψ2 is a nonbonding orbital characterized by a node passing through the central carbon, whereas ψ3 is an antibonding molecular orbital with two nodes. The molecular orbital frameworks of the allyl anion and cation are identical and differ only in the number of π electrons. The allyl cation has two π electrons in ψ1, whereas the allyl anion has four π electrons distributed between ψ1 and ψ2.

Figure1

Tags
Molecular Orbitals Of The Allyl Cation And AnionAllyl GroupSp2 hybridized Allylic CarbonAllyl AnionAllyl CationConjugated SystemMolecular OrbitalsBonding OrbitalNonbonding OrbitalAntibonding OrbitalElectrons

From Chapter 16:

article

Now Playing

16.4 : π Molecular Orbitals of the Allyl Cation and Anion

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.7K Views

article

16.1 : Structure of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.2 : Stability of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.3 : π Molecular Orbitals of 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

6.6K Views

article

16.5 : π Molecular Orbitals of the Allyl Radical

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.0K Views

article

16.6 : Electrophilic 1,2- and 1,4-Addition of HX to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.4K Views

article

16.7 : Electrophilic 1,2- and 1,4-Addition of X<sub>2</sub> to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.8 : Electrophilic Addition of HX to 1,3-Butadiene: Thermodynamic vs Kinetic Control

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.2K Views

article

16.9 : UV&ndash;Vis Spectroscopy of Conjugated Systems

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

5.9K Views

article

16.10 : UV&ndash;Vis Spectroscopy: Woodward&ndash;Fieser Rules

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

20.6K Views

article

16.11 : Pericyclic Reactions: Introduction

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

4.4K Views

article

16.12 : Thermal and Photochemical Electrocyclic Reactions: Overview

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.13 : Thermal Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.7K Views

article

16.14 : Photochemical Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.6K Views

article

16.15 : Cycloaddition Reactions: Overview

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved