登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Cranial ultrasound (CUS) is a valuable tool for brain imaging in critically ill neonates. This video shows a comprehensive approach for neonatal (Doppler) CUS for both clinical and research purposes, including a bedside demonstration of the technique.

摘要

Cranial ultrasound (CUS) is a reputable tool for brain imaging in critically ill neonates. It is safe, relatively cheap and easy to use, even when a patient is unstable. In addition it is radiation-free and allows serial imaging. CUS possibilities have steadily expanded. However, in many neonatal intensive care units, these possibilities are not optimally used. We present a comprehensive approach for neonatal CUS, focusing on optimal settings, different probes, multiple acoustic windows and Doppler techniques. This approach is suited for both routine clinical practice and research purposes. In a live demonstration, we show how this technique is performed in the neonatal intensive care unit. Using optimal settings and probes allows for better imaging quality and improves the diagnostic value of CUS in experienced hands. Traditionally, images are obtained through the anterior fontanel. Use of supplemental acoustic windows (lambdoid, mastoid, and lateral fontanels) improves detection of brain injury. Adding Doppler studies allows screening of patency of large intracranial arteries and veins. Flow velocities and indices can be obtained. Doppler CUS offers the possibility of detecting cerebral sinovenous thrombosis at an early stage, creating a window for therapeutic intervention prior to thrombosis-induced tissue damage. Equipment, data storage and safety aspects are also addressed.

引言

Since its clinical introduction in the late 1970’s cranial ultrasound (CUS) has been widely used for detecting congenital anomalies and acquired brain lesions during the neonatal period. In many neonatal intensive care units (NICUs), CUS has become indispensable in the care for critically ill neonates. Major advantages are its relatively low cost and the fact that it can be performed at bedside, even when a patient is unstable. In addition it is radiation-free and allows for serial imaging. Another technique often used for neuroimaging in critically ill neonates is magnetic resonance imaging (MRI). MRI provides excellent image quality, but its clinical use in NICU’s is currently limited because of logistic and safety issues1.

Over time, quality of CUS has drastically improved, with advancing technique leading to higher resolution, faster image processing and digital display and back-up. Important brain structures can be adequately visualized using optimal settings. Traditionally, images are obtained through the anterior fontanel. This approach is less suitable for evaluation of infratentorial structures because they are located far away from the transducer and the highly echoic tentorium impedes their assessment. Use of high-frequency linear transducers through alternative acoustic windows and adapted settings also provides access to these brain regions. Examples of these supplemental acoustic windows are the lambdoid (posterior), mastoid and lateral (temporal) fontanels. So far, however, only few NICUs use these additional acoustic windows routinely2-5. Doppler techniques can be used for screening patency of intracranial vessels. Flow velocities and indices in cerebral arteries can also be obtained. Some manufacturers now provide hardware to visualize flow around 2 cm/sec (Raets, et al., unpublished data). Small vessels are well displayed: medullary trunks and channels, subependymal veins tributing to the thalamostriate veins, and perforator arteries.

We present our approach of neonatal CUS, focusing on the use of different transducers, multiple acoustic windows and Doppler techniques. Neonatologists and radiologists use this approach in daily clinical practice but is also suitable for research purposes. In the practical part of the video we demonstrate bedside use in the NICU.

研究方案

注:此协议遵循当地人类研究伦理委员会的指导方针。

1.一般注意事项

注:有关设备,数据存储和安全性一般考虑得到解决的讨论。

  1. 获得使用一个高分辨率,实时,移动二维超声机具有多个换能器与频率(见讨论)的频带图像。通常情况下,获得使用探针的良好品质的图像与7.5至8.5兆赫的频率。

2.制备CUS考试

  1. 调度CUS检查,以便它不与其他程序,例如血液采样重合。
  2. 确保医护人员或家长可支持和/或舒适新生儿的检查过程中,使用的策略,如根据新生儿的个性化发展护理和评估计划6原则的</ SUP>。

3.审查通过前囟

  1. 沿着孵化器或婴儿床安装超声波机。
  2. 适用传感器凝胶到探针,以确保探头与皮肤之间的良好接触。考虑使用前凝胶升温。
  3. 通过前囟与凸探头在B模式开始成像。将探头与上转向右侧新生儿的探针的标记物的囟的中间。大脑的左侧将被显示在右侧的显示器。
    注:成像通过前囟可与新生儿在任何位置3来执行。用于研究目的,可能有必要争取一个标准头位置。
    1. 至少在五个冠状五矢状面图像记录。在第一图像调整深度,增益和时间增益补偿的设置,以产生一个图像填充该扇区,含有颅轮廓,避免荷兰国际集团太亮或太暗的图像和目标是从附近的,更深层次的思考结构之间的平衡。
    2. 冠状面
      注:试图获得完全对称的图像。当病灶附近额叶凸怀疑,考虑记录特定斜冠状切片,使得一个半球中显示更好的细节( 图1)。
      1. 为冠状前额图像,角探头转发形象化额叶,前向侧脑室的前角在嗅脑沟的水平。
      2. 用于在室间的水平,角度探针可视化冠状部分前向截图脉络膜描绘侧脑室,空腔透明隔,胼胝体,沟扣带的正面角冠状图像。注意基底节份的回声。
      3. 对于在丘脑水平冠状图像,角探头向后识别已故拉尔裂隙,在第三脑室和颞叶的屋顶截图脉络膜。注意相对于基底节丘脑(特别是腹外侧核)的回声。注意枕该网络损伤可能会显现在一个额外的冠状切面只是在心房的前面。
      4. 对于在心房的水平冠状图像,可视侧脑室的脉络丛的水平。确定颞叶和小脑半球。需要注意的脑室周围白质回声相比,脉络丛。与正常的强回声区的上方和侧面,以早产儿心房比较视辐射。
      5. 为冠状顶枕形象,角探头向后的顶枕沟的水平,以确定壁层和枕叶。
    3. 矢状面
      1. 旋转探头90°,上朝向新生儿的脸朝向探针的标记物。日脑部电子前部,将显示在监视器的左边。在下列结构中的水平( 图2)记录图像。
      2. 对于矢状图像,可视化的胼胝体,空腔透明隔(CSP),第三和第四脑室,小脑蚓部,小脑延髓池,脑桥和中脑。注意空腔Vergae的存在和空腔帆interpositi 7。
      3. 对于通过一个gangliothalamic卵形的矢状图像( 例如 ,右侧),角探头侧身通过侧脑室一个矢状图。确定脉络丛,并注意丘脑和基底节的回声。扫描的侧旁矢状平面应适当地表示与文本的工具。
      4. 对于矢状窦旁孤立的图像,角度探头进一步横向穿过岛。确定外侧裂和frontal-,temporal-,parietal-和枕叶。
      5. 重复矢状图像在t他对侧( 左)。
    4. 彩色多普勒
      1. 通过前囟使用彩色多普勒凸探头继续成像。考虑评估流速脑动脉和静脉,并获得派生指标。
        注:阻力指数(RI)被定义为收缩期峰值速度 - 舒张末期速度/收缩期峰值速度。 RI为角度无关,绝对速度的值是不8-10。 RI是不是在不同口径的动脉相似。如果在同一个容器中的精确相同的位置进行的连续测量是只用。
    5. 在下面的血管( 图3)冠状面图像记录:
      1. 可视化的横窦在小脑的水平。如果只有一个或没有一个横窦被可视化,尝试降低脉冲重复频率(PRF)。如果当时仍然只有一个或没有横向鼻窦可以通过前囟确定,通过乳突囟使用高频线阵探头的可视化(见第4.4.2节)。
      2. 可视威利斯与颈内动脉,大脑中动脉的圆圈和大脑前动脉在侧脑室的前角的水平。区分左,右侧前脑动脉往往具有挑战性的,但通常是不必要的。确定动脉纹状体烛台。
      3. 角头向后以可视化的基底动脉与相邻的颈静脉。
      4. 角度更倒退到可视化的内部脑和丘纹脉。
    6. 记录的图像在一个前脑动脉( 图4)的矢状面。评估流速和RI在该容器(通常低于胼胝体膝部)的特定部分。在附近的内部大脑大静脉中线速度可容易测量。
    7. 在前囟冠状面使用高频线性探针,鉴定上矢状窦。如果此失败,降低施加的压力与探针的囟的量。
      注:线性探针可用于浅表结构(脑膜,蛛网膜和硬膜下腔,皮质)的详细可视化。切向血管是在蛛网膜下腔。理想的情况下,如在前面的步骤中所述多普勒成像将新生儿的第一CUS检查期间进行。随访期间检查一些步骤可以跳过。如果怀疑脑静脉窦血栓形成多普勒成像步骤3.3.5.1,3.3.7和4.4.2应进行描述。

4.考试通过替代隔声窗

  1. 接下来,继续审议通过替代隔声窗。
  2. 考虑通过人字记录影像(POSterior)囟用凸探针( 图5)。后囟位于矢状面和人字缝3,11的交界处。图像穿过后囟通过将新生儿在侧卧位。
    注意:在许多早产儿了良好的图像,也可以通过在矢状缝与婴儿的后方面在仰卧位置3获得。
    1. 定位探针在后囟的中间一个矢状图。角头稍微偏离中线识别侧脑室的身体和枕角。将探头大致90°,得到冠状图。识别侧脑室的枕骨角。
  3. 考虑使用耳上方的凸形或线性探针通过横向(颞)窗口记录图像( 图6)。
    1. 如果需要的话,通过横向窗获取的图像,以允许一个脑干12的详细视图。把探头水平以上和稍微在耳朵的前面。移动探头,直至脑梗的可视化。
      注:其他结构,可以识别是第三脑室,导水管和颞叶。采用彩色多普勒,Willis环可以可视化。
  4. 通过乳突囟门( 图7)记录图像。乳突囟门位于耳后,在颞,顶叶及枕骨骨4的交界处。图像通过乳突囟通过将新生儿的侧卧位3。
    注:根据我们的经验,新生儿经常表现出不适的迹象,通过乳突囟图像时获得。因此,这将是最好的通过前囟和其他声学Windows映像后,要做到这一点。我们推测,这种不适可以通过以PULS听觉反应的机制造成的射频能量13上课。
    1. 使用凸探头通过乳突囟门的形象。将平行探头耳朵获得冠状图。扫探头来回识别小脑半球,小脑蚓部,第三和第四脑室,桥脑和小脑延髓池。在小preterms对侧小脑半球可以得到很好的描述。
    2. 使用线性探针通过乳突囟门的形象。如果(之一)的横窦无法通过前囟鉴定,通过乳突囟使用高频线性探针可视化。放置平行探头耳垂,得到冠状图。
      1. 确定小脑半球和第四脑室。采用彩色多普勒,确定横向和乙状窦,小脑幕窦导静脉。
  5. 考虑后颅窝通过枕骨大孔14个可视化。

结果

摄像,根据所描述的方案制备的实例列于图1 - 7。图片应该由有经验的观测仔细解释。对称成像是必要的,通过前囟( 图1)制成冠状图像的适当解释。任何可疑病灶应通过声窗比前囟其他可视化两种冠状和(中)矢状面或可视化。使用彩色多普勒进行可视化脑血管( 图3,图4,67)。脑内病灶的一些实例示于?...

讨论

我们描述和展示国家的最先进的方法对新生儿多普勒CUS。在经验丰富的手中,这是一个很好的工具,安全,连续床边新生儿脑成像。在许多新生儿重症监护室所描述的可能性不是最佳利用。添加多普勒研究允许颅内动脉和静脉通畅的筛选。流速可以评估并得到索引。多普勒CUS允许检测脑静脉窦血栓形成的在脆弱的横向早期阶段乙状窦的角度,使治疗干预前中风2。使用补充隔声窗提高检测?...

披露声明

The authors have nothing to disclose.

致谢

We thank the nurses (appearing on film) for supporting the neonates.

We thank J. Hagoort, MA, linguist, Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands, for reading and correcting the manuscript.

材料

NameCompanyCatalog NumberComments
MyLab 70Esaote (Genoa, Italy)Ultrasound system

参考文献

  1. Plaisier, A., et al. Safety of routine early MRI in preterm infants. Pediatric Radiology. 42 (10), 1205-1211 (2012).
  2. Raets, M. M. A., et al. Serial Cranial US for Detection of Cerebral Sinovenous Thrombosis in Preterm Infants. Radiology. 269 (3), 879-886 (2013).
  3. Di Salvo, D. N. A new view of the neonatal brain: Clinical utility of supplemental neurologic US imaging windows. Radiographics. 21 (4), 943-955 (2001).
  4. Enriquez, G., et al. Mastoid fontanelle approach for sonographic imaging of the neonatal brain. Pediatric Radiology. 36 (6), 532-540 (2006).
  5. Luna, J. A., Goldstein, R. B. Sonographic visualization of neonatal posterior fossa abnormalities through the posterolateral fontanelle. AJR Am J Roentgenol. 174 (2), 561-567 (2000).
  6. Als, H., et al. Individualized Behavioral and Environmental Care for the Very-Low-Birth-Weight Preterm Infant at High-Risk for Bronchopulmonary Dysplasia - Neonatal Intensive-Care Unit and Developmental Outcome. Pediatrics. 78 (6), 1123-1132 (1986).
  7. Govaert, P., de Vries, L. S. . An Atlas of Neonatal Brain Sonography. , (2010).
  8. Gray, P. H., Griffin, E. A., Drumm, J. E., Fitzgerald, D. E., Duignan, N. M. Continuous Wave Doppler Ultrasound in Evaluation of Cerebral Blood-Flow in Neonates. Archives of Disease in Childhood. 58 (9), 677-681 (1983).
  9. Seibert, J. J., et al. Duplex Pulsed Doppler Ultrasonography Versus Intracranial-Pressure in the Neonate - Clinical and Experimental Studies. Radiology. 171 (1), 155-159 (1989).
  10. Volpe, J. J., Perlman, J. M., Hill, A., Mcmenamin, J. B. Cerebral Blood-Flow Velocity in the Human Newborn - the Value of Its Determination. Pediatrics. 70 (1), 147-152 (1982).
  11. Correa, F., et al. Posterior fontanelle sonography: An acoustic window into the neonatal brain. American Journal of Neuroradiology. 25 (7), 1274-1282 (2004).
  12. Helmke, K., Winkler, P., Kock, C. Sonographic examination of the brain stem area in infants. An echographic and anatomic analysis. Pediatric Radiology. 17 (1), 1-6 (1987).
  13. Elder, J. A., Chou, C. K. Auditory response to pulsed radiofrequency energy. Bioelectromagnetics. , S162-S173 (2003).
  14. Brennan, C. M., Taylor, G. A. Sonographic imaging of the posterior fossa utilizing the foramen magnum. Pediatric Radiology. 40 (8), 1411-1416 (2010).
  15. Rutherford, M. A., et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology. 52 (6), 505-521 (2010).
  16. Wezel-Meijler, G., Steggerda, S. J., Leijser, L. M. Cranial Ultrasonography in Neonates: Role and Limitations. Seminars in Perinatology. 34 (1), 28-38 (2010).
  17. Leijser, L. M., de Vries, L. S., Cowan, F. M. Using cerebral ultrasound effectively in the newborn infant. Early Human Development. 82 (12), 827-835 (2006).
  18. Houston, L. E., Odibo, A. O., Macones, G. A. The safety of obstetrical ultrasound: a review. Prenatal Diagnosis. 29 (13), 1204-1212 (2009).
  19. Torloni, M. R., et al. Safety of ultrasonography in pregnancy: WHO systematic review of the literature and meta-analysis. Ultrasound in Obstetrics & Gynecology. 33 (5), 599-608 (2009).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

96

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。