JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

The murine model of irreversible unilateral ureteric obstruction (UUO) is presented together with the model of reversible UUO in which the ureteric obstruction is relieved by anastomosis of the severed ureter into the bladder. These models enable the study of renal inflammation and scarring as well as tissue remodeling.

摘要

Obstruction of the kidney may affect native or transplanted kidneys and results in kidney injury and scarring. Presented here is a model of obstructive nephropathy induced by unilateral ureteric obstruction (UUO), which can either be irreversible (UUO) or reversible (R-UUO). In the irreversible UUO model, the ureter may be obstructed for variable periods of time in order to induce increasingly severe renal inflammation and interstitial fibrotic scarring. In the reversible R-UUO model the ureter is obstructed to induce hydronephrosis, tubular dilation and inflammation. After a suitable period of time the ureteric obstruction is then surgically reversed by anastomosis of the severed previously obstructed ureter to the bladder in order to allow complete decompression of the kidney and restoration of urinary flow to the bladder. The irreversible UUO model has been used to investigate various aspects of renal inflammation and scarring including the pathogenesis of disease and the testing of potential anti-inflammatory or anti-fibrotic therapies. The more challenging model of R-UUO has been used by some investigators and does offer significant research potential as it allows the study of inflammatory and immune processes and tissue remodeling in an injured and scarred kidney following the removal of the injurious stimulus. As a result, the R-UUO model offers investigators the opportunity to explore the resolution of kidney inflammation together with key aspects of tissue repair. These experimental models are of relevance to human disease as patients often present with obstruction of the renal tract that requires decompression and are commonly left with significant residual kidney impairment that has no current treatment options and may lead to eventual end stage kidney failure.

引言

The overall aim of the experimental model described here is to induce obstructive nephropathy by unilateral ureteric obstruction (UUO), which can either be irreversible (UUO) or reversible (R-UUO). A simple irreversible model of UUO is presented in which the left ureter is permanently obstructed by ligation with a suture or by the application of a ligating clip. This results in marked dilatation of the ureter together with reduced renal blood flow and glomerular filtration. Renal histology demonstrates tubular dilatation and increasingly severe interstitial renal inflammation and fibrosis. Irreversible UUO is a useful model and has been adopted by many researchers in the study of both renal inflammation and fibrosis.1-4 Although the irreversible model of UUO requires some surgical expertise it is relatively straightforward and is often used to seek insights into the pathogenesis of interstitial renal injury and the ensuing fibrosis. Also presented is a less frequently used R-UUO model using a modification of the method originally described by Tapmeier et al.5 The R-UUO model has much future potential for the study of inflammatory and immune processes, cellular and tissue regeneration as well as the subsequent tissue remodeling following the removal of an injurious stimulus.

The more challenging R-UUO model has been used by a limited number of investigators with some groups employing a significantly different surgical technique to that described here6,7 though with interesting results. In the R-UUO model presented, the ureter is ligated to induce complete ureteric obstruction for a period of time sufficient to induce the level of injury and fibrosis desired: 7 days of UUO was chosen in the method described here. The ureteric obstruction is reversed and the kidney is allowed to decompress for a period of time determined by the investigator before the mice are culled and the kidney removed for analysis: 7 days of decompression was chosen in the method described here though a longer period would be chosen if the resolution of inflammation and fibrosis was being studied. Although the method described here requires significant surgical expertise, it offers several advantages over other R-UUO models. The application of soft walled plastic tubing to the obstructed ureter prevents excessive ureteric dilation and this facilitates the subsequent manipulation and anastomosis of the ureter. Furthermore, in the described R-UUO model the ureter is divided thereby allowing the removal of any residual urinary sediment and debris. This confirms that the remaining ureter lumen is de-obstructed and patent prior to anastomosis to the bladder.

Experiments incorporating both the irreversible and reversible UUO models can provide researchers with a powerful insight into the molecular and cellular mechanisms of both injury and subsequent resolution and regeneration. Thus, the model of R-UUO described here would be highly relevant to researchers interested in post-inflammatory tissue remodeling and how this can be modulated.

研究方案

一般指导:动物实验是在根据由所述动物施加的准则和规章(科学程序)法1986该协议和伴随视频协议是用于一个标准UUO和一个R-UUO,它可以在许多进行执行小鼠品系。在所附的视频,这两个过程都对雄性C57BL / 6小鼠8周龄进行。在代表性的结果部分给出的数据是从男性的FVB / N小鼠获得。

注意:此协议和伴随视频细节如何执行一个标准UUO和R-UUO利用左侧输尿管,但是相同的技术可以容易地应用到右输尿管。

1.动物准备和开腹

  1. 完成所有程序,无菌(蒸压)仪器和耗材。
  2. 注入盐酸氯胺酮(70毫克/千克)和美托咪定盐酸盐(1mg的/ kg)的腹腔内麻醉鼠标。注意:得到的麻醉剂平面的持续时间是4小时,没有补充麻醉是必需的。
  3. 确认麻醉由反射脚趾捏损失的深度。
  4. 除去周围切口区所有的头发,并通过应用稀释洗必泰溶液准备腹部皮肤进行手术。
  5. 放置在鼠标上的外科加热垫在仰卧位置,并使用低粘性胶带固定四肢到垫。
  6. 在手术过程中,监测小鼠对热烧伤作为外科加热垫的结果的迹象。如果可能的话使用非电动热源。
  7. 通过皮下注射盐酸丁丙诺啡(0.06mg / kg)的施用止痛和敷眼润滑剂以防止角膜干燥。
  8. 做中线剖腹手术,并利用组织分离剪刀将进入腹腔的股骨头缺血性白线的切口。
  9. 悬垂鼠标插入COLIBRI牵开器插入切口。

2.单侧输尿管梗阻

  1. 使用无菌棉签通过移位肠内朝向右侧腹腔暴露左侧输尿管和有潮湿窗帘覆盖它们。
  2. 使用有角度的钳分离并提起左侧输尿管。
  3. 要创建输尿管梗阻,结扎左侧输尿管两次,6 / O黑色编织丝线缝合膀胱和肾盂之间的任何地方。对于长期的实验中,使用可吸收缝合线的所有腹部手术。可替代地,一个结扎夹可以应用到输尿管。
  4. 为了隔离从输尿管,膀胱,分两个缝线之间的输尿管。
  5. 小心替换肠子进入腹膜腔。
  6. 按照第4节列出的步骤 - 手术后的恢复和护理,关闭切口和反向麻醉。

3.准备ReversiblË单侧输尿管梗阻

  1. 制备小鼠进行手术和隔离左侧输尿管如在步骤1.1至2.2以上详述。
  2. 以创建输尿管梗阻,可以颠倒,结扎左侧输尿管两次6 / O的黑编织丝缝合线靠近膀胱。离开上缝线的一端长的,因为这将被用于锚定软壁的塑料管在绕输尿管地方。
  3. 使一个纵向狭缝在软壁的塑料管的采用5mm长度,使得它可以被叉开打开,以允许它被应用到输尿管。任何软壁硅酮的塑料管,为1mm至2mm的外径的内径,都可以使用。
  4. 将软壁塑料管轻轻输尿管周围。确保长缝合线出现从在管道的狭缝的中心一旦围绕输尿管封闭。
  5. 放置6 / O黑色编织丝线缝合长度周围的软壁管封闭输尿管和领带一次。现在将缝合线的长端,摆脱在油管狭缝的中心,沿纵向穿过,使得其位于在先前缚缝合的顶部的管道。
  6. 配合周围设管道缝合两次以固定管道和长缝合线端在绕输尿管地方。
    注意:为了防止对输尿管和软壁的塑料管粘连形成,粘附还原溶液可以施加到周围的管的区域。
  7. 小心替换肠子进入腹膜腔。

4.术后恢复和护理

  1. 关闭腹膜使用5 / O黑色编织丝线缝合针毯,用金属夹子皮肤近似皮肤。
  2. 为了最大限度地减少手术后感染的风险,应用防腐剂诸如碘/酒精溶液到腹部皮肤。
  3. 部分逆转麻醉用阿替美唑盐酸盐(2毫克/千克)皮下给药。
  4. 通过皮下注射1毫升施用流体温热盐水。
  5. 监视鼠标,直到它已恢复了意识。
  6. 让鼠标在加热箱保持在29℃下放置24小时恢复。沾湿食品也可以提供,以鼓励流体和营养摄取。
  7. 离开鼠标恢复至诱导梗阻通常为7天所需的水平。
  8. 对于长期回收实验,提供持续的止痛药。如果鼠标是要恢复的时间超过7天,消除皮肤剪辑后7天内手术。
  9. 一旦阻塞所需的水平已被诱导,或者扭转UUO,如下所述,或安乐死的小鼠通过颈脱位,并收集肾脏进行病理组织学分析。

5.可逆单侧输尿管梗阻

  1. 要执行的R-UUO制备小鼠,其已经历制备的R-UUO,手术如步骤10.1到1.7。
  2. 如果存在,则去除皮肤剪辑和分割或移除在腹膜缝线来访问腹腔。注意:如果输尿管已经阻碍了长期实验皮肤片段应该被去除后7天的应用程序。
  3. 制备小鼠和如步骤1.8至2.2中所述隔离左侧输尿管。
  4. 使用成角度的镊子,摆脱可能已形成的任何肉芽肿组织的柔软薄壁塑料管。
  5. 切开缝合控股周围的阻塞输尿管塑料管材用手术刀,取出管子。
  6. 确认成功UUO通过评估肾积水的左肾存在,肾脏也应该出现面色苍白。
  7. 划分缝线之间的输尿管。
  8. 将输尿管的剩余长度,附着在肾脏,在一小块无菌纱布的。这将被用于收集尿沉渣和死细胞,将排水从输尿管一个第二肾盂一旦缝线被除去。
  9. 分以上的输尿管,但临近,缝合,让肾脏排出到纱布。离开下部缝合,最接近膀胱,完整无缺。这是为了确保没有尿会泄漏从膀胱并进入腹膜腔。
  10. 一旦输尿管和肾盂已被抽干,适用于长6 / O黑色编织丝线缝合输尿管的剩余长度结束。这将被用于帮助输尿管稍后进行膀胱吻合。
  11. 按照下面的步骤来输尿管吻合的剩余长度进入膀胱:
    1. 转动输尿管,使得它位于前部到原来的位置,并位于在肾脏。
    2. 从这样的,它出现在膀胱的方向上的输尿管的末端放置一个单一9 / O的聚酰胺单丝缝合钉固2mm左右。请注意,以确保缝合留在肌肉层,而不会进入输尿管管腔。该套结缝WIL升被用来锚定在膀胱输尿管。
    3. 以创建通过气囊的通道,通过使得其离开朝向正面(腹侧)壁膀胱的膀胱传递21G针对角。
    4. 休息了眼针的针21G的斜面。使用21G针头穿过膀胱引导眼针。在眼的针将被用于通过膀胱取输尿管。
    5. 通过9 / O的粘性缝合,在膀胱并通过相邻的入口点的膀胱壁施加到输尿管中步骤5.11.2,通过第一切口。一旦输尿管穿过膀胱传递,这将被捆绑到锚定输尿管到膀胱。
    6. 将通过眼针适用于输尿管末端在步骤5.10长6 / O黑色编织丝线缝合。
    7. 仔细撤回眼针从膀胱的同时确保输尿管通过膀胱也拉动。
    8. 一旦输尿管出现从日Ë膀胱取出眼针和应用钳长缝合在输尿管末端,防止回缩回膀胱。
    9. 锚输尿管内发生在膀胱,扳平9 / O锦纶单丝钉缝合,在步骤5.11.5应用。
    10. 在步骤5.11.2和5.11.5在周围的入口点两个位置描述牢牢锚定膀胱内的输尿管申请额外的单9 / O锦纶单丝领带缝线。
    11. 用剪刀打开的背部,膀胱壁推回稍微露出更多的新兴输尿管。
    12. 分以上的长缝合线定位在输尿管的端输尿管。输尿管应缩回进入膀胱的主体。它是通常的观察尿流出的开口在膀胱,确认输尿管的开口内腔。
    13. 关闭伤口在膀胱出口处有一个9 / O聚酰胺单丝缝合。
  12. 仔细更换成肠子腹膜腔。
  13. 提供术后护理的步骤4.1至4.8详细说明。
  14. 允许小鼠恢复,直到肾脏被减压,通常为7天。
  15. 在试验终点,安乐死鼠标颈椎脱位,收集肾脏进行组织病理学分析。

结果

肾脏的外观变化明显下尿路梗阻,它变得苍白和紧张触诊与时间( 图1)。有输尿管近端梗阻和肾盂增加扩张。肾脏变得越来越萎缩作为与延长梗阻导致肾皮质及髓质明显变薄梗阻性肾病的增加的持续时间。以下输尿管梗阻的逆转,肾脏的颜色变得更暗的血液流量的增加和组织水肿做出决议。肾的输尿管和肾盂扩张消退,尽管他们可能会稍微"宽松"仍是长期扩张的时期(图1)的结果。...

讨论

Obstruction of the kidney may affect native or transplanted kidneys and results in kidney injury and scarring. The R-UUO model is of relevance to human disease as patients often present with obstruction of the renal tract secondary to prostatic hypertrophy, posterior urethral valves etc. that requires decompression with patients commonly left with significant residual kidney impairment that has no current treatment options and may eventually lead to end stage kidney disease.8,9 The models detailed here enable ...

披露声明

作者有没有竞争或利益冲突披露。

致谢

The present study was supported by grants from Kidney Research UK (ST4/2011), the Cunningham Trust (CT11/14), the Mrs AE Hogg Charitable Trust for Kidney Research and the Renal Endowment Fund of the Royal Infirmary of Edinburgh.

材料

NameCompanyCatalog NumberComments
Blunt Dissecting ScissorsFine Science Tools14072-10
Spring Scissors – straightFine Science Tools15000-10
Toothed forcepsFine Science Tools11021-12
Angled forceps x 2Fine Science Tools00649-11
Straight forcepsFine Science Tools00632-11
Colibri 3 cm wire retractorFine Science Tools17000-03
Castroviejo needle holder with lockFine Science Tools12565-14
Wound clip applicatorFine Science Tools12031-07
7 mm wound clipsFine Science Tools12032-07
Castroviejo micro needle holder with lockFine Science Tools12060-01
OPMI pico microscopeCarl ZeissS100
Heat electronic padCozee Comfortn/a
6/O silk braided sutureHarvard Apparatus72-3287
9/O Dafilon (polyamide) sutureB-BraunG1111434
5/O braided silk sutureHarvard Apparatus51-7680
Regular bevel needle, 1 inch, 21GBecton, Dickinson and Company305175
1 ml syringe slip tipBecton, Dickinson and Company300184
Wypall paper swabsKimberley-ClarkL40Sterilised (Autoclave)
Cotton wool budsJohnson and Johnsonn/aSterilised (Autoclave)
Plain drapesGuardianCB03Sterilised (Autoclave)
Soft wall silicone rubber tubingSilicone tubing - internal diameter 1.0 mm; external diameter 2.0 mm; wall thickness 0.6 mm
(Lacri-Lube) White soft paraffin 57.3%, mineral oil 42.5% and lanolin alcohols 0.2%Allergan Ltd21956GB10X
(Videne) Povidone-iodine 10%Ecolab LtdPL 04509/0041
(Vetalar V) Ketamine hydrochloridePfizer Animal HealthVm 42058/4165100mg/ml solution
(Domitor) Medetomidine hydrochlorideOrion PharmaVm 06043/40031mg/ml
(Vetergesic) Bupernorphine hydrochlorideAlsto Animal HealthVm 00063/40020.3mg/ml
(Antisedan) Atipamezole hydrochorideOrion PharmaVm 06043/40045mg/ml
(Adept) 4% IcodextrinBaxterAdhesion reduction solution
NaCl 0.9%BaxterFKE1323

参考文献

  1. Chevalier, R. L., Forbes, M. S., Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75, 1145-1152 (2009).
  2. Kipari, T., et al. Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am J Pathol. 169, 388-399 (2006).
  3. Henderson, N. C., et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172, 288-298 (2008).
  4. Kitamoto, K., et al. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci. 111, 285-292 (2009).
  5. Tapmeier, T. T., et al. Reimplantation of the ureter after unilateral ureteral obstruction provides a model that allows functional evaluation. Kidney Int. 73, 885-889 (2008).
  6. Cochrane, A. L., et al. Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol. 16, 3623-3630 (2005).
  7. Puri, T. S., et al. Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Renal Physiol. 298, F1024-F1032 (2010).
  8. Heikkila, J., Holmberg, C., Kyllonen, L., Rintala, R., Taskinen, S. Long-term risk of end stage renal disease in patients with posterior urethral valves. J Urol. 186, 2392-2396 (2011).
  9. Ravanan, R., Tomson, C. R. Natural history of postobstructive nephropathy: a single-center retrospective study. Nephron Clin Pract. 105, c165-c170 (2007).
  10. Bascands, J. L., Schanstra, J. P. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int. 68, 925-937 (2005).
  11. Park, H. C., et al. Postobstructive regeneration of kidney is derailed when surge in renal stem cells during course of unilateral ureteral obstruction is halted. Am J Physiol Renal Physiol. 298, F357-F364 (2010).
  12. Manson, S. R., Niederhoff, R. A., Hruska, K. A., Austin, P. F. Endogenous BMP-7 is a critical molecular determinant of the reversibility of obstruction-induced renal injuries. Am J Physiol Renal Physiol. 301, F1293-F1302 (2011).
  13. Manson, S. R., Niederhoff, R. A., Hruska, K. A., Austin, P. F. The BMP-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced renal injury. J Urol. 185, 2523-2530 (2011).
  14. Chaves, L. D., et al. Contrasting effects of systemic monocyte/macrophage and CD4+ T cell depletion in a reversible ureteral obstruction mouse model of chronic kidney disease. Clin Dev Immunol. 2013, 836-989 (2013).
  15. Haque, M. E., et al. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: preliminary experience. J Magn Reson Imaging. 39, 835-841 (2014).
  16. Bai, Z. M., et al. Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: in vivo bioluminescence imaging and effects on renal fibrosis. Chinese Med J. 126, 1890-1894 (2013).
  17. Chaabane, W., et al. Renal functional decline and glomerulotubular injury are arrested but not restored by release of unilateral ureteral obstruction (UUO). Am J Physiol Renal Physiol. 304, F432-F439 (2013).
  18. Thornhill, B. A., Burt, L. E., Chen, C., Forbes, M. S., Chevalier, R. L. Variable chronic partial ureteral obstruction in the neonatal rat: a new model of ureteropelvic junction obstruction. Kidney Int. 67, 42-52 (2005).
  19. Thornhill, B. A., Chevalier, R. L. Variable partial unilateral ureteral obstruction and its release in the neonatal and adult mouse. Methods Mol Biol. 886, 381-392 (2012).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

94

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。