JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

The goal of this protocol is to describe the preparation and characterization of physically entrapped, poorly water soluble drugs in micellar drug delivery systems composed of amphiphilic block copolymers.

摘要

像polyethyleneglycol- -polylactic酸(PEG-B-PLA)两亲性嵌段共聚物可以自组装成胶束高于临界胶束浓度形成由亲水壳在水环境包围着的疏水核心。这些胶束的核心可以利用来加载疏水性的,水溶性差的药物,如多西他赛(DTX)和依维莫司(EVR)。的胶束结构和药物装载能力系统的表征之前是重要的体外和体内研究可以进行。本文所描述的协议的目标是提供必要的特征步骤,以实现规范化胶束制品。 DTX和EVR有1.9和9.6微克固有溶解度/ ml的分别可通过溶剂浇铸这增加DTX和EVR的水溶性,以分别1.86和1.85毫克/毫升来实现这些胶束的制备。在胶束的eval药物稳定性uated在室温下超过48小时表明药物的97%或更多保留在溶液中。胶束粒度,使用动态光散射评估,并表明,这些胶束的尺寸低于50纳米,取决于聚合物的分子量。用汇条件下透析在pH值7.4,在37℃下超过48小时的胶束释药进行了评估。曲线拟合结果表明,药物释放是由表明它是扩散驱动的第一顺序流程驱动。

引言

具有重复结构的两亲嵌段共聚物的亲水和疏水结构域的组成可以自发自组装,以形成被称为聚合物胶束三维大分子装配体。这些结构具有内疏水核由亲水壳包围。疏水芯具有或者通过物理截留通过疏水相互作用或由上到聚合物骨架化学缀合到掺入疏水性药物的能力。1许多优势存在,使用这些嵌段共聚物形成胶束用于药物递送。这些包括掺入难溶性药物,提高了掺入药物的药代动力学,和生物相容性和/或生物降解性聚合物的使他们安全的替代品常规增溶剂。2采用高分子胶束的另一个优点是它们的胶体粒径,15-之间150纳米3,使他们每年有吸引力renteral交付。因此,在过去的20年聚合物胶束已经成为可行的药物递送系统对水难溶性药物特别是用于癌症治疗。3,4-

目前有五个聚合胶束制剂用于癌症治疗正在进行临床试验。4四个在临床试验中的胶束是基于PEG的嵌段共聚物,而最后是含有聚环氧乙烷三嵌段共聚物。这些微胶粒的大小而变化,从20纳米至85纳米。使用基于PEG的聚合物的优点是它们的生物相容性和因第二块上也可以是可生物降解的。最近基于polyethyleneglycol- -polylactic酸(PEG-b -PLA)聚合物胶束新药物递送系统已被开发用于并发递送多种抗癌药物。在PEG-B- PLA胶束都是生物相容性和生物降解。这些多药胶束已示出为体外体内2,5,6-不同癌症模型ynergistic抑制和配合到利用多种药物的化疗,以防止电阻和降低毒性的当前范例。因此,存在大量的在制备和用于癌症和其它疾病状态使用表征这些胶束药物递送系统的兴趣。

在下面的工作我们提出由这种胶束可以制备和表征评价他们的利益疾病状态之前,一步一步的过程。对于这项工作的目的2难溶于抗癌剂,多西紫杉醇(DTX)和依维莫司(EVR)已被选定。既DTX和EVR是水溶性差的化合物与固有水溶解度在1.9和9.6微克/ ml的分别。7,8-二PEG-不同分子量b -PLA聚合物在这个协议中被用作配制的聚合物的积木胶束,这些聚合物聚乙二醇2000 - B -PLA 1800(3800道尔顿)和PEG 4000 - B -PLA 2200(6200道尔顿)。因此,PEG-b -PLA胶束可以提供一个独特的平台作为纳米载体的DTX和EVR单独和组合。所需的试剂/材料和设备需要准备和表征这些胶束于表1。

Access restricted. Please log in or start a trial to view this content.

研究方案

通过溶剂流延法1.准备个人与多药胶束的

  1. 称取DTX 1毫克或EVR 1毫克或两种药物在每个1毫克的双药物胶束(DDM)。
  2. 称取15毫克聚乙二醇2000 - B -PLA 1800PEG 4000 - B -PLA 2200无论是个人或DDM。
  3. 溶解药物/药物和聚合物在0.5毫升乙腈和地点在一个5毫升圆底烧瓶中。
  4. 通过使用旋转蒸发器蒸发该药物(多个) - 聚合物乙腈减压溶液形成薄药物分布的聚合物膜。设定旋转蒸发器至100rpm,40℃的水浴温度和260毫巴进行5分钟,随后降低至100毫巴3个多分钟的真空压力。
  5. 再水化用0.5ml去离子水的药物-聚合物膜 50℃,轻轻摇动烧瓶以形成胶束。
  6. 筛选结果通过0.2μm的尼龙过滤器荷兰国际集团胶束溶液,以除去任何未溶解的药物或污染物至1.5 ml离心管中。

用反相高效液相色谱(RP-HPLC)2.评估药物的装载及稳定性的胶束

  1. 与equilibriated在40℃的等度模式用乙腈/水流动相(62/38)含有0.1%磷酸和1%甲醇以1ml / min的流速一个C8柱进行RP-HPLC分析和注射体积为10微升。
  2. 经RP-HPLC分析,以确定初始载药量之前,在流动相100的稀释:新鲜配制的胶团(第1节)1。商店未稀释的个体微胶粒和DDM在室温(25℃)48小时,并准备新鲜1:100稀释的样品用流动相以通过RP-HPLC重新评估,并确定在24小时的药物(多个)稳定在胶束。
  3. 分别监控DTX和EVR峰在227和279纳米为1.7和5.7分钟分别保留时间。执行一式三份的所有测量。目前的数据为平均±SD载药量。

3.评估的胶束粒度的动态光散射(DLS)

  1. 稀释新鲜制备的胶束在去离子水中以1:20的比例(如在第1节中描述),以得到最后的聚合物的1.5毫克/毫升浓度。
  2. 测量He-Ne激光器(633纳米)的强度在173°,以确定散射。进行所有的测量在25℃以下预平衡2分钟。
  3. 执行一式三份的所有测量。本数据作为平均数Z均尺寸±SD随着分布的多分散性指数(PDI)。

4.评估的体外药物从个人胶束和DDM发布

  1. 如第1装入2.5毫升胶束描述成3 ml的透析盒与制备单独的和胶束DDM7000克/ mol的分子量截止(MWCO)。
    注意:此MWCO被选择,以使游离药物(多个)连同非关联聚合物分子自由扩散出带盒,从而保证漏槽条件。
  2. 放置盒在2.5L的10mM的pH 7.4的磷酸盐缓冲液(制备稀释的库存的200mM溶液),并改变它的缓冲器,每3小时,以确保接收器的条件。保持缓冲器的 37℃的温度在整个实验的持续时间。
  3. 于0,0.5%,1,2,3,6,9,12,24,和48小时,撤回150微升在盒的溶液和替换用150微升新鲜缓冲液中。
  4. 中所确定的第2条,以确定药物浓度分析用RP-HPLC样品。曲线拟合的基础上,使用stastitical软件一阶段的指数关联的简单扩散模型的药物(S)发布的数据。
  5. 电子商务计算达到药物释放的50%所需要的时间(t 1/2)基于曲线拟合在个别胶束或DDM乙酰胆碱的药物。请在四组所有的测量。

Access restricted. Please log in or start a trial to view this content.

结果

个别的DTX或EVR胶束及DTX和EVR DDM在PEG-b -PLA胶束成功配制在任一PEG 4000 - B -PLA 2200或PEG 2000 - B -PLA 1800( 图1)。

DTX时,EVR和DDM显示了相似的稳定性在PEG 4000 - B -PLA 2200或PEG 2000 - B -PLA 1800超过48小时( 图2)。 b -PLA 2200和PEG 2000 - -

Access restricted. Please log in or start a trial to view this content.

讨论

The use of polymeric micelles for drug delivery continues to expand due to their versatility and ability to deliver hydrophobic drugs for various disease states. Therefore, the techniques needed to prepare and characterize these formulations prior to use in cell culture or animals is a critical first step to determine the best pairing between the drug and the polymer. PEG-b-PLA are excellent amphiphilic block copolymers for drug delivery purposes. However, the block length of the hydrophilic and hydrophobic s...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors have nothing to disclose.

致谢

This study was supported by the grant from AACP New Pharmacy Faculty Research Award Program, Medical Research Foundation of Oregon New Investigator Grant, Oregon State University-Startup fund, and Pacific University, School of Pharmacy Start-up fund.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
PEG2000-b-PLA1800Advanced Polymer Materials, Inc6-01- PLA/2000PLA MW can be specified on ordering
PEG4000-b-PLA2200Advanced Polymer Materials, Inc6-01- PLA/4000PLA MW can be specified on ordering
DocetaxelLC LaboratoriesD-1000100 mg
EverolimusLC LaboratoriesE-4040100 mg
AcetonitrileEMD/VWREM-AX0145-1HPLC grade; 4 L
Round bottom flask Glassco/VWR89426-4965 ml
RV 10 Control Rotary EvaporatorsIKA Works8025001Rotoevaporator
Shimadzhu HPLC with DAD detectorShimadzhuRP-HPLC
Slide-a-lyzer dialysis casette MWCO 7000Thermo Scientific, Inc663703 ml
Phosphate buffer pH 7.4, 200 mMVWR100190-870500 ml
Malvern NanoZSMalvern Instruments, UKDLS
Nylon filterAcrodisc/VWR28143-24213 mm; 0.2µM
Phosphoric acid, NFSpectrum Chemical/VWR700000-626100 ml
GraphPad Prismwww.graphpad.comAnalysis software
Zorbax SB-C8 Rapid Resolution cartridge Agilent Technologies866953-9064.6 ×75 mm, 3.5 μm

参考文献

  1. Yokoyama, M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 7, 145-158 (2010).
  2. Shin, H. C., Alani, A. W., Rao, D. A., Rockich, N. C., Kwon, G. S. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. 140, 294-300 (2009).
  3. Adams, M. L., Lavasanifar, A., Kwon, G. S. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 92, 1343-1355 (2003).
  4. Oerlemans, C., et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 27, 2569-2589 (2010).
  5. Shin, H. C., et al. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 8, 1257-1265 (2011).
  6. Hasenstein, J. R., et al. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing Paclitaxel Rapamycin, and 17-AAG. Mol Cancer Ther. 11, 2233-2242 (2012).
  7. Mazzaferro, S., et al. Bivalent sequential binding of docetaxel to methyl-beta-cyclodextrin. Int J Pharm. 416, 171-180 (2011).
  8. Iwase, Y., Maitani, Y. Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biol Pharm Bull. 35, 975-979 (2012).
  9. Mishra, G. P., Doddapaneni, B. S., Nguyen, D., Alani, A. W. Antiangiogenic effect of docetaxel and everolimus as individual and dual-drug-loaded micellar nanocarriers. Pharm Res. 31, 660-669 (2014).
  10. Xu, W., Ling, P., Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013, 340315(2013).
  11. Lavasanifar, A., Samuel, J., Kwon, G. S. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 54, 169-190 (2002).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

102

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。