A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this protocol is to describe the preparation and characterization of physically entrapped, poorly water soluble drugs in micellar drug delivery systems composed of amphiphilic block copolymers.
Amphiphilic block copolymers like polyethyleneglycol-block-polylactic acid (PEG-b-PLA) can self-assemble into micelles above their critical micellar concentration forming hydrophobic cores surrounded by hydrophilic shells in aqueous environments. The core of these micelles can be utilized to load hydrophobic, poorly water soluble drugs like docetaxel (DTX) and everolimus (EVR). Systematic characterization of the micelle structure and drug loading capabilities are important before in vitro and in vivo studies can be conducted. The goal of the protocol described herein is to provide the necessary characterization steps to achieve standardized micellar products. DTX and EVR have intrinsic solubilities of 1.9 and 9.6 µg/ml respectively Preparation of these micelles can be achieved through solvent casting which increases the aqueous solubility of DTX and EVR to 1.86 and 1.85 mg/ml, respectively. Drug stability in micelles evaluated at room temperature over 48 hr indicates that 97% or more of the drugs are retained in solution. Micelle size was assessed using dynamic light scattering and indicated that the size of these micelles was below 50 nm and depended on the molecular weight of the polymer. Drug release from the micelles was assessed using dialysis under sink conditions at pH 7.4 at 37 oC over 48 hr. Curve fitting results indicate that drug release is driven by a first order process indicating that it is diffusion driven.
Amphiphilic block copolymers with repeating structure composed of hydrophilic and hydrophobic domains can spontaneously self-assemble to form three dimensional macromolecular assemblies known as polymeric micelles. These structures have an inner hydrophobic core surrounded by a hydrophilic shell. The hydrophobic core has the ability to incorporate hydrophobic drugs either by physical entrapment through hydrophobic interactions or by chemical conjugation on to the polymer backbone.1 Many advantages exist to using these block copolymers to form micelles for drug delivery. These include incorporation of poorly soluble drugs, improving pharmacokinetics of the incorporated drugs, and the biocompatibility and/or biodegradability of the polymers makes them a safe alternate to conventional solubilizers.2 Another advantage of using polymeric micelles is their colloidal particle size, between 15–150 nm3, making them attractive for parenteral delivery. Therefore, over the last 20 years polymeric micelles have emerged as viable drug delivery systems for poorly water-soluble drugs especially for cancer therapy.3,4
Currently there are five polymeric micellar formulations for cancer therapy undergoing clinical trials.4 Four of the micelles in the clinical trials are PEG-based diblock copolymers while the last is a triblock copolymer containing polyethyleneoxide. The size of these micelles varied from 20 nm to 85 nm. The advantage of using PEG based polymers is their biocompatibility and depending on the second block can also be biodegradable. Recently new drug delivery systems based on polyethyleneglycol-block-polylactic acid (PEG-b-PLA) polymeric micelles have been developed for the concurrent delivery of multiple anticancer drugs. The PEG-b-PLA micelles are both biocompatible and biodegradable. These multi-drug loaded micelles have shown a synergistic inhibition of different cancers models in vitro and in vivo2,5,6 and fit into the current paradigm of utilizing multiple drugs in chemotherapy to prevent resistance and lowering toxicity. Therefore, there is a great deal of interest in preparing and characterizing these micellar drug delivery systems for use in cancer and other disease states.
In the work below we have outlined a step-by-step process by which such micelles can be prepared and characterized before evaluating them in disease states of interest. For the purpose of this work two poorly-soluble anti-cancer agents, docetaxel (DTX) and everolimus (EVR) have been chosen. Both DTX and EVR are poorly water-soluble compounds with intrinsic water solubilities at 1.9 and 9.6 µg/ml respectively.7,8 Two PEG-b-PLA polymers with different molecular weights were used in this protocol as the building blocks for the formulated polymeric micelles, these polymers are PEG2000-b-PLA1800 (3,800 Da) and PEG4000-b-PLA2200 (6,200 Da). PEG-b-PLA micelles can therefore provide a unique platform as a nanocarrier for DTX and EVR individually and in combination. The required Reagents/Materials and Equipment needed to prepare and characterize these micelles are listed in Table 1.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Individual and Multi-drug Loaded Micelles by Solvent Casting Method
2. Assessment of Drug Loading and Stability in Micelles Using Reverse-phase High Performance Liquid Chromatography (RP-HPLC)
3. Assessment of micelle Particle Size by Dynamic Light Scattering (DLS)
4. Assessment of In Vitro Drug Release from Individual Micelles and DDM
Access restricted. Please log in or start a trial to view this content.
Individual DTX or EVR micelles and DTX and EVR DDM in PEG-b-PLA micelles are successfully formulated in either PEG4000-b-PLA2200 or PEG2000-b-PLA1800 (Figure 1).
DTX, EVR, and the DDM showed similar stability in PEG4000-b-PLA2200 or PEG2000-b-PLA1800 over 48 hr (Figure 2). Initial drug loading of EVR in PEG4000-b
Access restricted. Please log in or start a trial to view this content.
The use of polymeric micelles for drug delivery continues to expand due to their versatility and ability to deliver hydrophobic drugs for various disease states. Therefore, the techniques needed to prepare and characterize these formulations prior to use in cell culture or animals is a critical first step to determine the best pairing between the drug and the polymer. PEG-b-PLA are excellent amphiphilic block copolymers for drug delivery purposes. However, the block length of the hydrophilic and hydrophobic s...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This study was supported by the grant from AACP New Pharmacy Faculty Research Award Program, Medical Research Foundation of Oregon New Investigator Grant, Oregon State University-Startup fund, and Pacific University, School of Pharmacy Start-up fund.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
PEG2000-b-PLA1800 | Advanced Polymer Materials, Inc | 6-01- PLA/2000 | PLA MW can be specified on ordering |
PEG4000-b-PLA2200 | Advanced Polymer Materials, Inc | 6-01- PLA/4000 | PLA MW can be specified on ordering |
Docetaxel | LC Laboratories | D-1000 | 100 mg |
Everolimus | LC Laboratories | E-4040 | 100 mg |
Acetonitrile | EMD/VWR | EM-AX0145-1 | HPLC grade; 4 L |
Round bottom flask | Glassco/VWR | 89426-496 | 5 ml |
RV 10 Control Rotary Evaporators | IKA Works | 8025001 | Rotoevaporator |
Shimadzhu HPLC with DAD detector | Shimadzhu | RP-HPLC | |
Slide-a-lyzer dialysis casette MWCO 7000 | Thermo Scientific, Inc | 66370 | 3 ml |
Phosphate buffer pH 7.4, 200 mM | VWR | 100190-870 | 500 ml |
Malvern NanoZS | Malvern Instruments, UK | DLS | |
Nylon filter | Acrodisc/VWR | 28143-242 | 13 mm; 0.2µM |
Phosphoric acid, NF | Spectrum Chemical/VWR | 700000-626 | 100 ml |
GraphPad Prism | www.graphpad.com | Analysis software | |
Zorbax SB-C8 Rapid Resolution cartridge | Agilent Technologies | 866953-906 | 4.6 ×75 mm, 3.5 μm |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved