JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

To study combined solid organ and vascularized composite allotransplantation, we describe a novel heterotopic en bloc chest wall, thymus, and heart transplant model in mice using a cervical non-suture cuff technique.

摘要

Exploration of novel strategies in organ transplantation to prolong allograft survival and minimizing the need for long-term maintenance immunosuppression must be pursued. Employing vascularized bone marrow transplantation and co-transplantation of the thymus have shown promise in this regard in various animal models.1-11 Vascularized bone marrow transplantation allows for the uninterrupted transfer of donor bone marrow cells within the preserved donor microenvironment, and the incorporation of thymus tissue with vascularized bone marrow transplantation has shown to increase T-cell chimerism ultimately playing a supportive role in the induction of immune regulation. The combination of solid organ and vascularized composite allotransplantation can uniquely combine these strategies in the form of a novel transplant model. Murine models serve as an excellent paradigm to explore the mechanisms of acute and chronic rejection, chimerism, and tolerance induction, thus providing the foundation to propagate superior allograft survival strategies for larger animal models and future clinical application. Herein, we developed a novel heterotopic en bloc chest wall, thymus, and heart transplant model in mice using a cervical non-suture cuff technique. The experience in syngeneic and allogeneic transplant settings is described for future broader immunological investigations via an instructional manuscript and video supplement.

引言

Cardiac transplantation is the treatment of choice for end-stage heart failure. Both technical advancements and pharmacological innovations have propelled the field to early graft acceptance rates above 90%.12,13 Despite this, 60-80% 5-year graft survival is at a standstill and chronic rejection, characterized by transplant vasculopathy, remains inevitable.14-16 Furthermore, patients are subjected to multiple surgical procedures and lifelong immunosuppression, which are associated with chest wall deformities and medical sequelae and toxicities, respectively. The need for innovative approaches to extend allograft survival, minimize the immunosuppressive requirements, and offer reconstructive options for anatomical deformities is pressing.

Vascularized composite allotransplantation offers a unique strategy for improving heart transplant outcomes both from an immunological aspect as well as a reconstructive perspective.17 Vascularized composite allografts are also unique in a way that they have an inherent source of donor-derived hematopoietic stem cells which has shown a favorable ability to reduce immunosuppression and induce and sustain mixed chimerism.1-8 Additionally, co-transplantation of the thymus has shown to prolong survival of both, solid organ transplants and vascularized composite allografts.2,9-11 Combining these strategies with heart transplantation offers a novel solution to the aforementioned challenges facing heart transplantation.18

Murine models serve as excellent platforms for mechanistic in vivo investigation because of the availability of antibodies and well-defined inbred and knockout strains.19-21 Although heart transplantation in mice is commonly studied using a heterotopic intraabdominal microsurgical suture transplant model22-25, a heterotopic, cervical, non-suture cuff technique model has shown to be extremely replicable, reliable, and carries fewer rates of thrombosis.19,26,27 The goal of this study is to develop a heterotopic en bloc osteomyocutaneous chest wall, thymus, and heart transplant technique in mice to study the immunological mechanisms of combined solid organ and vascularized composite allotransplantation using a cervical non-suture cuff technique. This cluster allograft is perfused through the anastomosis of the donor descending aorta to the right common carotid artery and the donor pulmonary artery to the right external jugular vein. Preservation of the internal thoracic vessels and associated thymus branches is paramount to perfusing the chest wall (sternum, ribs, muscles, and skin) and thymus.

研究方案

所有的手术过程均符合美国约翰霍普金斯大学和农业部的美国农业部和公共卫生服务的要求完成。该协议遵循美国约翰霍普金斯大学动物护理和使用委员会,机构审查委员会批准的准则(协议号M013M490)。最终存活数据被记录为下面描述的外科手术。供体和受体动物接收使用丁丙诺啡先发制人麻醉以0.1mg /千克SC手术前和在受体动物丁丙诺啡之一小时重新施用同样剂量移植后,并根据需要在最初48小时内重新给药手术后。

1.供体移植恢复

注意:开始移植40分钟的捐助部分早于接受者的移植,以尽量减少受援国的麻醉时间,便于同时结束时间或略有耳利尔结束时间与收件人的准备。

  1. 使用标准的无菌显微器械和无菌手套的程序。我们的实验室使用显微仪器高压灭菌。
  2. 麻醉用异氟醚感应蒸发器在4%的供体小鼠(男)。使用无创伤机械剪除去从颈椎,胸椎头发,腹部区域。将动物在仰卧位,并通过鼻锥保持异氟烷上1-2%。通过定期评估脚趾捏撤回反射确保整个过程充分麻醉。
  3. 在此之前的皮肤切口,广泛应用聚维酮碘消毒剂其次是异丙醇用消毒棉签准备工作。
  4. 开始时先用浅横皮肤切口与整个颈部和腹部的皮肤剪刀。连接两个切口双边沿腋线。
  5. 采用显微镊解剖颈部两侧识别,结扎和划分颈外静脉用6-0丝线缝合和剪刀。然后使用电划分胸锁乳突肌,露出颈内静脉和颈总动脉,双侧。通过在左路和右路颈总动脉和颈内静脉散装时尚6-0丝线缝合。
    注:它们将被捆绑,后来在步骤1.9分。
  6. 急剧划分带状肌和相关疏松蜂窝组织,位于前部的气管,用剪刀释放颈椎区的其余附件。
  7. 用双极电和锐性剥离,分胸大肌肌肉和锁骨露出锁骨下血管和结扎(6-0丝线缝合),并划分近端。
  8. 接下来,轻轻的,把握和撤回动物的阴茎。沿阴茎的背形象化阴茎的背静脉,和消毒区域用异丙醇。使用地下30针,注入30000单位肝素静脉内通过背静脉并允许阴茎反冲回到其原来的位置。可能会发生局部漏肝素溶液到周围组织的。
  9. 使用周围颈总动脉和颈内静脉的前面放置散装的联系,结扎和划分结构,两侧。
  10. 接下来用剪刀作一横切口intrabdominal。剔骨肠内以暴露肝下下腔静脉,并注入2毫升冷欧洲柯林斯心麻痹液进入肝下下腔静脉。确保正确注射肝变色和停止心跳的推进到下一步骤之前,可视化。
    注:欧洲Collins液是在我们的实验室制备,见表特定的试剂和仪器。
  11. 用剪刀通过双边DIAPH进入胸腔内空腔ragmatic切口从露出腹部。延伸穿过肋间肌肉和肋头侧的切口。反映胸壁暴露心脏,胸腺和大血管的同时,确保保护沿胸壁胸廓内血管。
  12. 注入肝上下腔静脉用4ml冷欧洲柯林斯心麻痹液。
  13. 识别主动脉根部和远侧跟踪到降主动脉。大幅削减降主动脉(保留最大长度)。
  14. 确定肺动脉主干及分刚好接近其分支点(保留最大长度)。然后,使用2毫升冷欧元柯林斯停搏液,通过放置一个软塑料尖导管进入肺动脉的管腔冲洗肺动脉干和心脏。
  15. 用6-0丝线缝合,结扎和划分下腔静脉,肺静脉汇合,和双侧上腔静脉辅助分支。然后提升并沿主干支气管和气管小心不要进入呼吸道附件解剖心脏头侧。使用锋利的和双极电解剖胸壁,胸腺和心脏完全从供体小鼠释放它。
  16. 最后,修整同种异体移植胸壁体外到更小的尺寸,用剪刀沿胸骨和横向肋脉,小心不要破坏胸廓血管( 图1A)。为了下面的血运重建尽量减少出血,使用沿着osteomusculocutaneous胸骨边界双极电灼。
  17. 将在10毫升冷(4度摄氏度)的移植欧洲-科林斯的解决方案,如果收款人没有为插入做好准备。然而,如果接收方是准备插页,同种异体移植物转移直到接收者手术视野。

2.收件人准备

注意:要尽量减少收件人麻醉时间,在一个单独的操作站开始接收方准备前的供体移植收获完成约40分钟。

  1. 使用单独的一套标准的无菌显微仪器和程序无菌手套。
  2. 麻醉用异氟醚感应蒸发器在4%的受体小鼠(男或女)。使用无创机械快船移除右颈部和胸部的头发。
  3. 鼠标放置在仰卧位置和角度的右上肢稍稍下方形成的头部和右上肢之间的110度角。通过鼻锥维持麻醉上1-2%异氟醚。
  4. 放置石油眼药膏上使用棉签鼠标眼睛。在此之前的皮肤切口,用聚维酮碘防腐剂接着异丙醇广泛准备手术部位。
  5. 用剪刀,做一个皮肤切口沿右下博尔中线下颌骨DER和infero,横向延伸的切口右胸部。使用钝性分离微血管钳,调动了颈外静脉被周向无血管的软组织和外膜。除以使用电各分公司,并删除使用锐性剥离和电灼对移植的自由空间颌下腺右叶。
  6. 确保足够的长度的颈外静脉的外翻在一个压脉袋,并结扎外颈静脉用6-0丝线缝合。通过预切聚酰亚胺箍的内腔插入静脉并使用牛头犬微血管钳固定到位容器袖口复杂。然后用剪刀,近侧划分外部颈静脉,外翻在袖口,以及在适当位置10-0尼龙缝合线固定。 图1B)
  7. 划分右胸锁乳突肌双极电以暴露颈总动脉。周向暴徒ilize颈部区域内头侧向最远侧点的动脉。这是使用钳船只钝性分离,除去软组织和周围的外膜完成。
  8. 用6-0丝线缝合,结扎并划分颈总动脉。通过预切割的聚酰亚胺袖口的管腔通过动脉和其固定用的牛头犬微血管钳尽量靠近胸部入口越好。除以血管远端,轻轻地扩张用显微扩张血管,埃弗特在袖口,并在适当位置10-0尼龙缝合修复。 图1B)
    注:具体显微扩张器在特定的试剂和仪器表所述。

3.移植插图

  1. 保持无菌的标准仪器和无菌手套把收件人颈部区域内的移植在倒置和倾斜位置。
  2. 下一步,将捐助下降AOR抽动管腔在收件人的动脉袖套构建体和其固定用10-0尼龙缝合线图1C 和1D)。
  3. 时尚相同吻合作为供体肺动脉和受体小鼠图1C 和1D)的外翻颈外静脉袖套构建体之间步骤3.2。
  4. 首先拆下静脉微血管钳(颈外静脉夹),然后松开动脉夹(颈总动脉夹)。在动脉灌注,检查移植解决任何出血的全部内容。如果出血可视化,重新动脉夹,以减少出血量及减少使用双极电出血的来源。
  5. 检查移植物,并确保止血。释放并彻底清除动脉微血管夹。观察心脏表现出再灌注的迹象,这将是快速扩容的心脏室立即显现出来,并等待对B吃开始在0.5-1分钟。用温盐水(35摄氏度),以滋润的心脏。
  6. 悬垂胸壁到解剖位置,以免诱发的吻合任何的扭曲和紧张局势。关闭手术伤口的是用6-0尼龙连续缝线图1E)的皮肤。

4.术后护理

  1. 辖0.3 ml生理盐水腹腔内液体推注,术后立即进行补液。
  2. 然后经皮下疼痛和感染预防,分别注入丁丙诺啡(0.1mg的/ kg)和恩诺沙星(5毫克/公斤)。
  3. 放置在热灯下的动物直到从麻醉觉醒,并返回到胸骨斜卧。在恢复过程中,检查颈部以可视化的移植保证足够的移植物灌注的原纤化的心跳。
  4. 一旦醒来,在卧位,返回鼠标到一个单独的笼子(无其他老鼠的公司)在那里可以领取食物和水自由采食。由于右上肢任何临时次要限制性运动,留在笼子的地板上的明胶的食物来源。
  5. 观察受体小鼠1小时,术后,然后将其返回到笼子设备,在它能够接收的食物和水随意并进行检查,一天三次的第一个24小时的活性和营养摄取。根据需要为先72小时全天监控小鼠的痛苦和困扰,并重新剂量丁丙诺啡(0.1毫克/千克)的迹象皮下的两倍。检查动物此后每天,每星期体重它们。
  6. 与兽医工作人员咨询,如果任何小鼠显示的痛苦,痛苦的迹象,或采食量下降。考虑早期安乐死(在我们的协议安乐死技术采用 CO 2过量为7分钟,接着通过颈椎脱位)。
  7. 同种异体移植心脏跳动的停止被定义为一个特定端点促使鼠标为sacrificed。

结果

同系C57BL / 6移植实现长期生存。同种异体移植物图1)的设计中被证明是成功的,从动物的生存透视,并评价正在进行移植物存活的能力。这是通过覆盖皮肤表明剩余可行,活性持续同种异体移植物的毛发生长,和心跳能够用可视化和手指触诊进行评估。存活数据被表示图2中进行同源移植小鼠。平均存活时间大于109天。基于存活数据,可以合理推断,移植的同种异体?...

讨论

有众多的现象因入同种异体移植,其中包括的免疫学调查,但不限于:急性和慢性排斥反应,直接和间接的抗原呈递,收件人敏化,或混合嵌合体诱导的机制。19动物模型已成为的黄金标准移植免疫学的研究中,和小鼠模型被普遍,由于其成本低,转基因和基因敲除小鼠的可用性,市售的单克隆抗体,相对降低兽医和外壳的要求,并易于复制的实现。迄今为止,多种心脏移植模型已经用于?...

披露声明

The authors do not have any conflicts of interest or financial disclosures to declare.

致谢

This work was funded by the American Association of Plastic Surgeons 2014 Academic Scholar Award.

材料

NameCompanyCatalog NumberComments
Euro-Collins SolutionThe solution is not commercially purchased but rather prepared in the laboratory. To make a 500 ml solution add the ingredient listed below to a 330 ml of double distilled water. Mix well, and then fill in the rest of the 170 ml of double distilled water into the solution to a final volume of 500 ml.
Ingredients: 1.02 g KH2PO4, 3.66 g K2HPO4, 0.56 g KCl, 0.42 g NaHCO3, and 17.52 g of glucose.
SutureEthilonMWI 726676-0 Ethilon https://www.mwivet.com (MWI - Veterinary Supplies)
Polyimide Cuff Vein (21G)Vention Medical141-0043http://www.ventionmedical.com/products-and-services/polyimide-tubing/
Polyimide Cuff Artery (24G)Vention Medical141-0027http://www.ventionmedical.com/products-and-services/polyimide-tubing/
Soft plastic tip catheterTerumoSR*OX2419CA24G x 3/4" 
Microsurgical dilatorS&TD-5a.1Dilator, 11 cm, FH, 0.1 mm AT10d

参考文献

  1. Santiago, S. F., et al. Heterotopic sternum transplant in rats: A new model of a vascularized bone marrow transplantation. Microsurgery. 19 (7), 330-334 (1999).
  2. Bozkurt, M., Klimczak, A., Nasir, S., Zor, F., Krokowicz, L., Siemionow, M. Composite osseomusculocutaneous sternum, ribs, thymus, pectoralis muscles, and skin allotransplantation model of bone marrow transplantation. Microsurgery. (1), 43-50 (2013).
  3. Klimczak, A., Agaoglu, G., Carnevale, K. A., Siemionow, M. Applications of bilateral vascularized femoral bone marrow transplantation for chimerism induction across the major histocompatibility (MHC) barrier: part II. Ann Plast Surg. 57 (4), 422-430 (2006).
  4. Agaoglu, G., Carnevale, K. A., Zins, J. E., Siemionow, M. Bilateral vascularized femoral bone transplant: a new model of vascularized bone marrow transplantation in rats, part I. Ann Plast Surg. 56 (6), 658-664 (2006).
  5. Agaolgu, G., Unal, S., Siemionow, M. Transplantation of the vascularized bone allograft into the inguinal region. Plas Reconstr Surg. 115 (6), 1794-1795 (2005).
  6. Ozer, K., et al. Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: effect of duration of the treatment. Transplantation. 75 (1), 31-36 (2003).
  7. Mundinger, G. S., et al. Tunneled superficial inferior epigastric artery (SIEA) myocutaneous/vascularized femur chimeric flaps: a model to study the role of vascularized bone marrow in composite allografts. Microsurgery. 32 (2), 128-135 (2012).
  8. Barth, R. N., et al. Vascularized bone marrow-based immunosuppression inhibits rejection of vascularized composite allografts in nonhuman primates. Am. J. Transplant. 11 (7), 1407-1416 (2011).
  9. Siemionow, M., Izycki, D., Ozer, K., Ozmen, S., Klimczak, A. Role of thymus in operational tolerance induction in limb allograft transplant model. Transplantation. 81 (11), 1568-1576 (2006).
  10. Nobori, S., et al. Thymic rejuvenation and the induction of tolerance by adult thymic grafts. Proc. Natl. Acad. Sci. USA. 103 (50), 19081-19086 (2006).
  11. Menard, M. T., et al. Composite ‘thymoheart’ transplantation improves cardiac allograft survival. Am J Transplant. 4 (1), 79-86 (2004).
  12. Hunt, S. A. Taking heart--cardiac transplantation past, present, and future. N Engl J Med. 355 (3), 231-235 (2006).
  13. Shah, A. B., Patel, J. K., Rafiei, M., Morrissey, R. P., Kittleson, M. M., Kobashigawa, J. A. The impact of mean first-year heart rate on outcomes after heart transplantation: does it make a difference?. Clin Transplant. 27 (5), 659-665 (2013).
  14. Kaczmarek, I., et al. Tacrolimus with mycophenolate mofetil or sirolimus compared with calcineurin inhibitor-free immunosuppression (sirolimus/mycophenolate mofetil) after heart transplantation: 5-year results. J Heart Lung Transplant. 32 (3), 277-284 (2013).
  15. Mastrobuoni, S., Dell'Aquila, A. M., Azcarate, P. M., Rabago, G., Herreros, J. Long-term survival (>20 years) following heart transplantation. J Cardiovasc Surg. 53 (5), 677-684 (2012).
  16. Hamour, I. M., Khaghani, A., Kanagala, P. K., Mitchell, A. G., Banner, N. R. Current outcome of heart transplantation: a 10-year single centre perspective and review. QJM. 104 (4), 335-343 (2011).
  17. Schultz, B. D., Mohan, R., Dorafshar, A. H., Gottlieb, L. J. Chest Wall, Thymus and Heart Vascularized Composite Allograft Proof of Concept Cadaveric Model for Heart Transplantation. Ann Plast Surg. 73 (1), 102-104 (2014).
  18. Sosin, M., Torregrossa, G., Gerosa, G., Tuffaha, S. H., Dorafshar, A. H. Pushing the Boundary of Solid Organ and Vascularized Composite Allotransplantation: A Clinical Chest Wall, Thymus, and Heart Transplant Simulation. American Society of Reconstructive Microsurgery Annual Meeting. , (2015).
  19. Oberhuber, R., et al. Murine Cervical Heart Transplantation Model Using a Modified Cuff Technique. J Vis Exp. (92), e50753 (2014).
  20. Huang, X., et al. A modified model of cervical heterotopic cardiac transplantation for chronic rejection research. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 22 (12), 1508-1510 (2008).
  21. Hasegawa, T., Visovatti, S. H., Hyman, M. C., Hayasaki, T., Pinsky, D. J. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat Protoc. 2 (3), 471-480 (2007).
  22. Corry, R. J., Winn, H. J., Russell, P. S. Heart transplantation in congenic strains of mice. Transplant Proc. 5 (1), 733-735 (1973).
  23. Corry, R. J., Winn, H. J., Russell, P. S. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation. 16 (4), 343-350 (1973).
  24. Niimi, M. The technique for heterotopic cardiac transplantation in mice: experience of 3,000 operations by one surgeon. J Heart Lung Transplant. 20 (10), 1123-1128 (2001).
  25. Plenter, R. J., Zamora, M. R., Grazia, T. J. Four decades of vascularized heterotopic cardiac transplantation in the mouse. J Invest Surg. 26 (4), 223-228 (2013).
  26. Matsuura, A., Abe, T., Yasuura, K. Simplified mouse cervical heart transplantation using a cuff technique. Transplantation. 51 (4), 896-898 (1991).
  27. Tomita, Y., Zhang, Q. W., Yoshikawa, M., Uchida, T., Nomoto, K., Yasui, H. Improved technique of heterotopic cervical heart transplantation in mice. Transplantation. 64 (11), 1598-1601 (1997).
  28. Brandacher, G., Grahammer, J., Sucher, R., Lee, W. P. Animal models for basic and translational research in reconstructive transplantation. Birth Defects Res C Embryo Today. 96 (1), 39-50 (2012).
  29. Quaini, F., et al. Chimerism of the transplanted heart. N Engl J Med. 346 (1), 5-15 (2002).
  30. Laflamme, M. A., Myerson, D., Saffitz, J. E., Murry, C. E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res. 90 (6), 634-640 (2002).
  31. Leventhal, J., et al. Chimerism and tolerance without, GVHD or engraftment syndrome in, HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 4 (124), 124-128 (2012).
  32. Talmor, M., et al. Bone marrow-derived chimerism in non-irradiated, cyclosporin-treated rats receiving microvascularized limb transplants: evidence for donor-derived dendritic cells in recipient lymphoid tissues. Immunology. 86 (3), 448-455 (1995).
  33. Arslan, E., Klimczak, A., Siemionow, M. Chimerism induction in vascularized bone marrow transplants augmented with bone marrow cells. Microsurgery. 27 (3), 190-199 (2007).
  34. Page, E. K., Dar, W. A., Knechtle, S. J. Tolerogenic therapies in transplantation. Front Immunol. 3, 198 (2012).
  35. Lukomska, B., Durlick, M., Cybulska, E., Olszewski, W. L. Comparative analysis of immunological reconstitution induced by vascularized bone marrow versus bone marrow cell transplantation. Transpl Int. 9, S492-S496 (1996).
  36. Brandacher, G., Lee, W. P., Schneeberger, S. Minimizing immunosuppression in hand transplantation. Expert Rev Clin Immunol. 8 (7), 673-683 (2012).
  37. Lin, C. H., et al. The neck as a preferred recipient site for vascularized composite allotransplantation in the mouse. Plast Reconstr Surg. 133 (2), 133e (2014).
  38. Sucher, R., et al. Hemiface allotransplantation in the mouse. Plast Reconstr Surg. 129 (4), 867-870 (2012).
  39. Sucher, R., et al. Mouse hind limb transplantation: a new composite tissue allotransplantation model using nonsuture supermicrosurgery. Transplantation. 90 (12), 1374-1380 (2010).
  40. Sucher, R., et al. Orthotopic hind-limb transplantation in rats. J Vis Exp. (41), e2022 (2010).
  41. Maglione, M., et al. A novel technique for heterotopic vascularized pancreas transplantation in mice to assess ischemia reperfusion injury and graft pancreatitis. Surgery. 141 (5), 682-689 (2007).
  42. Zou, Y., Brandacher, G., Margreiter, R., Steurer, W. Cervical heterotopic arterialized liver transplantation in the mouse. J Surg Res. 93 (1), 97-100 (2000).
  43. Kamada, N., Calne, R. Y. Orthotopic liver transplantation in the rat. Technique using cuff for portal vein anastomosis and biliary drainage. Transplantation. 28 (1), 47-50 (1979).
  44. Zimmermann, F. A., Butcher, G. W., Davies, H. S., Brons, G., Kamada, N., Türel, O. Techniques for orthotopic liver transplantation in the rat and some studies of the immunologic responses to fully allogeneic liver grafts. Transplant. Proc. 11 (1), 571-577 (1979).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

107

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。