JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

一种通过调节过程中样品干燥过程中衬底温度降低MALDI质谱离子信号的空间分异协议证明。

摘要

This protocol demonstrates a simple sample preparation to reduce spatial heterogeneity in ion signals during matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The heterogeneity of ion signals is a severe problem in MALDI, which results in poor data reproducibility and makes MALDI unsuitable for quantitative analysis. By regulating sample plate temperature during sample preparation, thermal-induced hydrodynamic flows inside droplets of sample solution are able to reduce the heterogeneity problem. A room-temperature sample preparation chamber equipped with a temperature-regulated copper base block that holds MALDI sample plates facilitates precise control of the sample drying condition. After drying of sample droplets, the temperature of sample plates is returned to room temperature and removed from the chamber for subsequent mass spectrometric analysis. The areas of samples are examined with MALDI-imaging mass spectrometry to obtain the spatial distribution of all components in the sample. In comparison with the conventional dried-droplet method that prepares samples under ambient conditions without temperature control, the samples prepared with the method demonstrated herein show significantly better spatial distribution and signal intensity. According to observations using carbohydrate and peptide samples, decreasing substrate temperature while maintaining the surroundings at ambient temperature during the drying process can effectively reduce the heterogeneity of ion signals. This method is generally applicable to various combinations of samples and matrices.

引言

Mass spectrometry (MS) is one of the most important analytical techniques for analyzing the molecular compositions of complex samples. Among all the ionization methods used in MS, matrix-assisted laser desorption/ionization (MALDI) is the most sensitive and widely used method in bioanalytical applications.1 In comparison to other ionization techniques, MALDI has the highest sensitivity and high tolerance to salt contaminants. Such analytical properties make MALDI the first choice for carbohydrate analysis and many proteomics applications. However, sample preparation is a crucial step for obtaining high quality data in MALDI-MS.

The most commonly used sample preparation method for MALDI-MS is the dried-droplet method, in which sample droplets are deposited on a surface and dried under ambient conditions. This drying method is simple and generally effective.2-5 However, a common problem in the dried-droplet method is that the resultant analyte/matrix crystals normally distribute irregularly. In many cases, the crystals aggregate at the periphery of sample areas, resulting in the so-called ring-stain formation.6-8 The heterogeneous crystal morphologies affect the spatial distribution of analyte molecules, which results in severe fluctuation in ion signal over sample areas. Such severe signal fluctuations and poor data reproducibility are known as the "sweet spot" problem in MALDI-MS.9 Thus, there is a great need for reducing spatial heterogeneities in MALDI-MS dried droplet applications.

Hydrodynamic flows in the sample droplet play an important role in determining the spatial distribution of samples prepared with the dried-droplet method.10-12 It was found that the evaporation of solvent induces outward capillary flows within droplets, which are responsible for the ring-stain formation.7,10 In contrast, recirculation flows induced by tangential surface-tension gradients may counterbalance the outward capillary flows.13 If the recirculation flow speeds are higher than that of the outward capillary flows, the samples can be efficiently redistributed to reduce the heterogeneity problem.14

In this work, we demonstrate a detailed protocol for preparing samples with a simple drying chamber to induce efficient recirculation flows during droplet drying processes. Droplet drying conditions are precisely controlled, including the temperatures of the sample plate and its surroundings, and the relative humidity within the chamber. The model analytes include maltotriose and bradykinin chain (1-7). The matrix used for the demonstration is 2,4,6-trihydroxyacetophenone (THAP). The samples are examined with time-of-flight (TOF) MS, and the data are analyzed quantitatively to show the reduction of heterogeneity.

研究方案

注:此协议为减少与干滴法制备麦芽三糖和激肽片段(1-7)的空间异质性的发展。该协议包括三个主要步骤,包括准备和预处理,样品沉积和干燥,和质谱数据分析。的程序概述,并在下面更详细描述:

1.准备和预

  1. 清洗样品板
    1. 戴上丁腈手套,并用清洁剂和蒸馏水,去离子水(DDW)轻轻手洗样品板。
    2. 冲洗用甲醇(MeOH)和DDW样品板。
    3. 插入样品板在一个600ml烧杯中,用DDW填充。
    4. 超声处理在DDW样品板为在超声​​浴中(200瓦,40千赫)15分钟。
    5. 从烧杯中取出DDW和填充用甲醇烧杯中。
    6. 超声处理在MeOH样品板在超声浴(200瓦,40千赫)15分钟。
    7. 吹掉溶剂滴上用氮气板和保持样品板样品沉积之前干燥。
  2. 调节烘干室温度
    注意:干燥室是一个35×20×45 立方厘米 (宽x深x高)丙烯酸室图1显示了干燥系统的图片。该腔室通过气体流量计以恒定的流率通入室温的氮气,以保持由所述干燥室内部安装了一个校准湿度计监测的低相对湿度条件。在装有编程的恒温循环器的干燥室的铜基块用于容纳不锈钢样品板。铜基块能够从5样品板温度调节至25℃。空气,铜基块和样品板的温度由K型热电偶监控。
    1. 打开门,迅速投入样品板的铜基块然后关门。
    2. 手动调节气体流量计来设置氮气流速至10标准立方英尺每小时(SCFH)。
    3. 监测由湿度计和微调气体流量计在干燥室中的相对湿度,以确保相对湿度总是低于25%。
    4. 监测样品板的由K型热电偶的温度和手动调整水循环器温度,直到该样品板达到5℃下的实验或用于控制室温(25℃)。
      注意:为了在一个设计温度稳定的样品板,水环温度通常设定为0〜小于设计的样品低5℃。例如,为了保持5℃,在样品板中,水环行器的温度设定在0〜2℃的范围内;保持样品板在25℃,水环行器的温度设定在23至25℃的范围内。
    5. 确保所需的温度和相对湿度样品沉积之前达到( 表1)。
      注:所有参数,以及用于与不同的样品板的温度的干燥方法其设置值示于表1。
      注:在一个较低的样品板温度,如果室内大门是敞开的很长一段时间,可能会发生在样品板上冷凝水。如果出现冷凝水,关上门,直到水冷凝干燥就可以了不要存放任何样本。
  3. 矩阵和分析物溶液的制备
    1. 基质溶液的制备
      1. 制备0.1,用50%乙腈(ACN)M THAP溶液:50%DDW水溶液。
    2. 分析物的制备
      1. 准备10 -4与DDW中号麦芽三糖的解决方案。
      2. 在50%乙腈制备10 -5 M激肽片段(1-7)溶液(ACN):50%DDW水溶液。

2.样品沉积和干燥

  1. 预混物的0.1M THAP溶液0.25微升和0.25微升10 -4 M麦芽三糖或10 -5 M激肽片段(1-7)在微量离心管的解决方案。
  2. 涡3秒的混合溶液中。
  3. 离心2秒(2,000 XG)的混合溶液中,收集在离心管底部的溶液。
  4. 打开干燥室的门,小心地存放0.1微升与吸管样品板解决方案,并立即关门。
  5. 等待样品液滴干燥。
    注:本典型地观察到的干燥时间具有不同的样品板的温度列于表1对于5℃的样品板的温度,在平均干燥时间为800〜1000秒;为25℃的样品板的温度,在平均干燥时间为100〜150秒EC。
  6. 干燥后,打开干燥室的门。
  7. 设置水循环器温度至室温(25℃)。
    注意:如果该样品板是不断在室温(25℃)在干燥过程中保持跳过此步骤。
  8. 该样品板温度恢复到室温(25℃)后,从干燥室的样品板。
  9. 检查5倍的立体显微镜下样品形态和拍摄快照亮场图像。
    注意:如果晶体形态并不如预期,有必要用相同的程序准备一个新的样品。典型的晶体形貌示于图2的上面板。
    注意:在低的样品板的温度,如5℃的情况下,它预热样品板来带离干燥室的前室的温度很重要。当沉积的样品中, 守预混搜索解决方案N的吸管在10秒内一角。 不要沉积样品后,再次使用预混液。 图2的上图显示具有不同的样品板的温度制备的样品的亮场图像。

3.质谱数据分析

  1. 质谱数据采集
    注:制备后,将样品可以利用成像质谱进行分析。在目前的研究中,成像MS实验使用的是实验室自制同步的双极性TOF进行(DP-TOF)成像质谱仪。15商业MALDI-TOF质谱仪具有成像能力也适用于这样的实验。质谱仪以线性萃取并用优化的提取延迟正离子模式操作。离子的动能为20千伏。激光束尺寸为35微米的样品表面上的直径,并且每一个点的光谱是大街5激光发射愤怒。
    1. 插入样品板进入MALDI质谱仪。
    2. 执行成像质谱分析,以在步骤2.1-2.9中制备的样品。
    3. 选择在结果窗口所示的质量列表的特征质量峰并点击"2D"绘制二维离子的图像。
      注:对于麦芽三糖与THAP混合的特征峰sodiated麦芽三糖,质子THAP和sodiated THAP。用于与THAP混合激肽片段(1-7),特征峰包括质子激肽片段(1-7),质子化THAP和sodiated THAP。
    4. 点击弹出窗口中的调节按钮,以确定信号强度的上限和下限,并点击"保存图片"。此设置定义离子图像的对比度。
      注意:在每个单独的数据集,裂化区域和示出低亮度的零点被消除。
    5. 观察比较离子与采取了一步2.9亮场图像的图像。
      注:成像质谱和特定离子的图像的构造可以与商业仪器来实现。由于各种数据采集和分析软件时,用户应遵循由仪器供应商提供,以获得高品质的图像的软件指令。
  2. 数据分析
    注:样品的异质性定量分析。在这个演示中,每个样本分为内部开发的分析离子的空间分布由软件的多个同心区。也可以使用单独的数据分析软件进行分析。
    1. 点击在结果窗口中显示的离子图像中的空斑和裂化区以除去不重要的区域。
      注:此过程定义离子形象的重要领域。
    2. 单击"查找边缘"按钮找到离子图像的最外层。
    3. 点击"扣除"保存在数据库中最外层的离子丰度的信息和同时除去从离子图像这一层。这代表最外层一个复选框会出现在结果窗口中的"输出数据"名单。
    4. 重复步骤3.2.2和3.2.3直到离子图像的中心被定义。
    5. 点击并在"输出数据"列表中选择所有的复选框,然后单击"导出"导出数据。
    6. 打开使用电子表格软件来计算每一层的平均离子丰度来获得离子的空间分布信息导出的数据。

结果

亮场图像以及以5样品板温度和25℃制备麦芽三糖和激肽片段(1-7)的所述MS图像示于图1中 。在sodiated麦芽三糖,的离子信号主要填充的情况下在样品区域的周围时,它是在25℃的样品板温度制备。通过降低样品板温度至5℃,信号均匀在整个样品区填充。在5℃,准备样品时,唯一明显的缺点是,有比在25℃制备的样品更多的裂缝。质子缓激肽片段(1-7)的离子?...

讨论

根据以往的理论预测,液滴内温度引起的水动力流可以向外克服溶剂挥发诱导毛细血管流动。当温度液滴增加内梯度分子的这种内部再循环的效率提高。根据预测结果,保持样品板温度时低于5℃,同时保持其周围环境温度,再循环流动的液滴内的平均流速大于向外毛细管流动的速度的4倍左右。如果样品板温度是相同的环境中,再循环流的平均速度比向外毛细流慢1800倍。这一计算的结果表明,样?...

披露声明

The authors declare no competing financial interest.

致谢

This work is supported by the Genomics Research Center, Academia Sinica and the Ministry of Science and Technology of Taiwan, the Republic of China (Contract No. 104-2119-M-001-014).

材料

NameCompanyCatalog NumberComments
Reagent
Detergent powderAlconox242985
MethanolMerck106009
AcetonitrileMerck100003
2,4,6-trihydroxyacetophenone (THAP)Sigma-AldrichT64602 
Bradykinin fragment (1-7)Sigma-AldrichB1651
MaltotrioseSigma-Aldrich47884
Pipette tipsMettler Toledo17005091
Microcentrifuge tubeAxygenMCT-150-C
Equipment
Milli-Q water purification systemMilliporeZMQS6VFT1
Powder-free nitrile glovesMicroflexSU-690
600 ml beakerDuran2110648
Ultrasonic cleanerDeltaDC300H
HygrometerWisewind5330
Nitrogen gas flowmeterDwyerRMA-6-SSV
K-type thermocouplesDigitron311-1670
CentrifugeSelect BioProductsForce Mini 
PipetteRaininpipet-lite XLS
StereomicroscopeOlympusSZX16
Temperature controllable drying chamberthis lab
Synchronized dual-polarity time-of-flight imaging mass spectrometer (DP-TOF IMS)this lab
MALDI-TOF stainless steel sample targetthis lab

参考文献

  1. Karas, M., Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 60, 2299-2301 (1988).
  2. Beavis, R. C., Chait, B. T. Velocity Distributions of Intact High Mass Polypeptide Molecule Ions Produced by Matrix Assisted Laser Desorption. Chem. Phys. Lett. 181, 479-484 (1991).
  3. Beavis, R. C., Chaudhary, T., Chait, B. T. Alpha-Cyano-4-Hydroxycinnamic Acid as a Matrix for Matrix-Assisted Laser Desorption Mass-Spectrometry. Org. Mass Spectrom. 27, 156-158 (1992).
  4. Ehring, H., Karas, M., Hillenkamp, F. Role of Photoionization and Photochemistry in Ionization Processes of Organic-Molecules and Relevance for Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry. Org. Mass Spectrom. 27, 472-480 (1992).
  5. Strupat, K., Karas, M., Hillenkamp, F. 2,5-Dihydroxybenzoic Acid - a New Matrix for Laser Desorption Ionization Mass-Spectrometry. Int. J. Mass Spectrom. Ion Process. 111, 89-102 (1991).
  6. Hu, H., Larson, R. G. Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B. 106, 1334-1344 (2002).
  7. Deegan, R. D., et al. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature. 389, 827-829 (1997).
  8. Hu, J. -. B., Chen, Y. -. C., Urban, P. L. Coffee-Ring Effects in Laser Desorption/Ionization Mass Spectrometry. Anal. Chim. Acta. 766, 77-82 (2013).
  9. Schwartz, S. A., Reyzer, M. L., Caprioli, R. M. Direct Tissue Analysis Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Practical Aspects of Sample Preparation. J. Mass Spectrom. 38, 699-708 (2003).
  10. Hu, H., Larson, R. G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B. 110, 7090-7094 (2006).
  11. Bhardwaj, R., Fang, X., Attinger, D. Pattern Formation During the Evaporation of a Colloidal Nanoliter Drop: A Numerical and Experimental Study. New J. Phys. 11, 075020 (2009).
  12. Savino, R., Paterna, D., Favaloro, N. Buoyancy and Marangoni Effects in an Evaporating Drop. J Thermophys Heat Tr. 16, 562-574 (2002).
  13. Probstein, R. F. . Surface Tension. in Physicochemical Hydrodynamics : An Introduction. , 305-361 (1994).
  14. Lai, Y. -. H., et al. Reducing Spatial Heterogeneity of MALDI Samples with Marangoni Flows During Sample Preparation. J. Am. Soc. Mass Spectrom. 27, 1314-1321 (2016).
  15. Hsiao, C. -. H., et al. Comprehensive Molecular Imaging of Photolabile Surface Samples with Synchronized Dual-Polarity Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 25, 834-842 (2011).
  16. Vorm, O., Roepstorff, P., Mann, M. Improved Resolution and Very High-Sensitivity in MALDI TOF of Matrix Surfaces Made by Fast Evaporation. Anal. Chem. 66, 3281-3287 (1994).
  17. Gabriel, S. J., Schwarzinger, C., Schwarzinger, B., Panne, U., Weidner, S. M. Matrix Segregation as the Major Cause for Sample Inhomogeneity in MALDI Dried Droplet Spots. J. Am. Soc. Mass Spectrom. 25, 1356-1363 (2014).
  18. Mampallil, D., Eral, H. B., van den Ende, D., Mugele, F. Control of Evaporating Complex Fluids through Electrowetting. Soft Matter. 8, 10614-10617 (2012).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

116 MALDI

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。