Method Article
Tandem splicing events occur at sites less than 12 nucleotides apart. Quantifying ratios of such splice variants is feasible using an absolute quantitative PCR approach. This manuscript describes how splice variants of the gene STAT3, in which two splicing events results in Serine-701 inclusion/exclusion and α/β C-termini, can be quantified.
Human signal transducer and activator of transcription 3 (STAT3) is one of many genes containing a tandem splicing site. Alternative donor splice sites 3 nucleotides apart result in either the inclusion (S) or exclusion (ΔS) of a single residue, Serine-701. Further downstream, splicing at a pair of alternative acceptor splice sites result in transcripts encoding either the 55 terminal residues of the transactivation domain (α) or a truncated transactivation domain with 7 unique residues (β). As outlined in this manuscript, measuring the proportions of STAT3's four spliced transcripts (Sα, Sβ, ΔSα and ΔSβ) was possible using absolute qPCR (quantitative polymerase chain reaction). The protocol therefore distinguishes and measures highly similar splice variants. Absolute qPCR makes use of calibrator plasmids and thus specificity of detection is not compromised for the sake of efficiency. The protocol necessitates primer validation and optimization of cycling parameters. A combination of absolute qPCR and efficiency-dependent relative qPCR of total STAT3 transcripts allowed a description of the fluctuations of STAT3 splice variants' levels in eosinophils treated with cytokines. The protocol also provided evidence of a co-splicing interdependence between the two STAT3 splicing events. The strategy based on a combination of the two qPCR techniques should be readily adaptable to investigation of co-splicing at other tandem splicing sites.
短程(串联)的选择性剪接,其中备用受体或供体位点是靠近彼此,是在哺乳动物中1,无脊椎动物2和植物3常见。据估计,哺乳动物基因的20%含有替代剪接位点2-12个核苷酸隔开4。许多站点的相隔3个核苷酸,并导致在单个密码子的包括或排除。有一个在这些网站5,6一些人认为辩论有关拼接法规性质的拼接图案的差异是如此微妙的选择是随机的7,而另一些基于组织特异性8推断监管。
串联剪接位点的选择已经分析半定量使用改性毛细管电泳7,和高分辨率凝胶电泳8。 RNA测序(RNA测序)读取可用于在每个接合量化拼接比率现场。以这种方式,RNA测序数据已经提供的洞察的串联剪接位点9的调节。它还使基于核苷酸序预计10剪接变异率的预测。在大多数拼接的重点,其中包括或排除一个密码子已经上更经常发生的串联受体剪接位点,被称为NAGNAGs(其中n =任何核苷酸)的。
串联捐助替代剪接位点包括或不包括单一密码子(GYNGYN识别基序,其中Y =嘧啶)比串联受体较少见。信号转导和转录3(STAT3)的激活剂是经历串联捐助剪接1,11的一个关键基因。串联供体剪接位点加入外显子21和22,并导致在密码子的包括或排除对丝氨酸-701(S或ΔS分别)1,11。下游替代受体位点(40个核苷酸彼此分开)接合的外显子22和23A / B结果在列入激活结构域(α)或具有7独特的C端残基(β)11截短激活域的任一55末端残基的。因此,四剪接变体是可能的。
STAT3蛋白在多种细胞类型12的转录因子和主要信号集成商和突变时,其构激活有助于癌症的几个表型(参考文献13综述)。工作综合征,免疫缺陷疾病的特点是高水平的IgE,也引起了STAT3基因突变(参照14综述)。对于STAT3α和β剪接变体蛋白不同的角色已经先前所述15。最初,STAT3β被认为在一个显性负方式16行事,拮抗STAT3α的转录活性,但随后的工作表明它具有独立的靶基因17 。尽管串联拼接的精妙之处,有理由相信没有或丝氨酸701(Ser701)影响功能的存在。不仅是Ser701靠近酪氨酸-705(残余物中STAT3的活化18磷酸化),但最近的研究表明,STAT3 S和ΔS剪接变体都必需STAT3-嗜弥漫大B细胞淋巴瘤(DLBLCL)的活力细胞19。生物相关性还有待探索。鉴于剪接变体组合物可以影响的功能,我们努力发现是否比通过细胞因子的刺激在嗜酸性粒细胞扰动。
起初,我们试图通过使用PCR特异性STAT3α和β剪接变体,接着的产品切割用限制酶特异于在S剪接变体, 阿飞探索两种剪接事件之间的关联。产品的密度表明包容Ser701为roughly十倍比其在两个STAT3α和β遗漏(ΔS)更常见(数据未显示)。然而,这种半定量方法是不能充分再现的,并不能有效地用于测量所有四个剪接同时变体。分析每一个的四个剪接变异体的比例,有必要建立产生紧技术(给定样品的数测定)定量PCR(qPCR的)协议复制。
相对定量PCR依赖于感兴趣的基因的比较已知在特定水平20待表达标准或看家基因和当感兴趣和管家基因的基因都具有相似的效率扩增是适当的。双链(DS)DNA结合的荧光(花青)染料结合的PCR扩增子21,并有一定数目的循环后,足够的扩增已发生荧光是可检测的。较高的初始水平谈话中,较低的阈值循环(CT)值。自cDNA制备的浓度不同,需要的转录物的浓度与已知在所有样品中一致的水平待表达的转录物,如葡萄糖醛酸酶-β(GUSB)的嗜酸性粒细胞22的浓度进行比较。
相对的qPCR不是高度相似的序列可行,如在从串联剪接产生的剪接变体。特异性扩增剪接变体所需的严格条件导致效率下降。相反,绝对定量必须使用23。这需要制备标准曲线用感兴趣的剪接转录的已知浓度,并确保PCR条件优化特异性24。如所描述的,对于特定的基因绝对和相对的qPCR数据可合并以告知该基因的表达的理解在特定的细胞类型,在这种情况下,STAT3在各种刺激嗜酸性粒细胞25。
这里,STAT3剪接变体定量与期望该方法可以适用于其它串列剪接事件的有针对性的研究说明。优化是一个漫长的过程,在不同浓度和循环参数无数次的迭代几对引物在几个月的过程中进行测试。该协议的主要特点是基于与剪接变异体已知浓度的标准曲线引物特异性验证和量化。结合相对定量PCR证明了我们的应用程序帮助,但不是必需的。
注:未识别信息在符合由威斯康星 - 麦迪逊中心大学健康科学机构审查委员会的协议获得批准(#1513至70年)共收到外周血嗜酸性粒细胞。对于使用在研究各试样的获得从供体签署了知情同意书。
1.创建质粒为模板的标准
2.分析引物特异性绝对定量PCR
3.评估绝对qPCR分析特异性和重复性
4.执行相对定量PCR检测
5.分析绝对定量PCR数据未知样品
6.合并绝对和相对定量PCR数据
质量好的定量PCR数据会产生一个S形扩增曲线( 图2a),表示在循环的过程中成绩单呈指数增长。过分模板的存在可导致高荧光背景,这意味着不恰当的基线是建立在最初的几个循环。如果数据不提供的指数曲线( 图2b),进一步优化是必要的(步骤3.1和3.4所述)。有关解决qPCR的结果进一步信息,请参考32。为模板校准质粒产生的标准曲线将指示的扩增( 图3中所示为STAT3Sα曲线)的效率。所述的条件下,观察83至95%之间的效率。为特异性(步骤3.4)的公式假定相等的效率,这是不可能的25,这样的特异性很可能是大于特异性因子暗示。
为了评估STAT3水平的一致性,测定四个剪接变体的绝对值以及总STAT3,后者使用引物扩增的区域共同所有四个剪接变体( 图4)的水平。理想情况下,线性回归(相关指示)和斜率(泛STAT3来概括剪接变异体的比率)都应该是接近1。
绝对的qPCR数据表示为饼图显示四个剪接变体的比例随时间刺激后用细胞因子( 图5a)。嗜酸性粒细胞静息(0小时)有STAT3Sα的比例最小,但这种变异一直是最丰富的。相乘的STAT3β剪接变体的级分(S ^6 +ΔSβ)通过STAT3ΔS剪接变体的级分(ΔSα+ΔSβ)一致地得到比ΔSβ实验上记录的值低的值。如果剪接事件是独立的,人们会预期相乘ΔS的分数由β变体的级分变体将给与该实验确定的值一致的值。不是从独立的剪接预计ΔSβ的更高水平的建议一个共同拼接存在偏差。
合并绝对和相对定量PCR数据表明,所有STAT3剪接变异体水平升高刺激后细胞因子IL-3和TNFα,含量达到峰值6小时后刺激( 图5b - E)。三四个剪接变异体,转录水平相比,在媒体嗜酸性粒细胞IL-3 +TNFα治疗嗜酸性粒细胞(6小时)高出约3倍在同一时间点。STAT3Sα水平在IL3 +TNFα治疗嗜酸性粒细胞的3.5倍相比,在该时间点在媒体嗜酸性粒细胞。最大的不确定性(最大的标准误差测量的)被认为在ΔSβ( 图5e),其包括总STAT3的所有样品中的最小的部分。这并不奇怪,因为较低水平与较高的Ct值相关联。需要更多的周期,以达到所述阈值周期将化合物的不确定性是由于扩增效率周期到周期的变化。
图1: 引物对原理用于执行STAT3剪接变异体和泛STAT3用于特异性地扩增每个STAT3剪接变异体(Sα,Sβ,分别ΔSα和ΔSβ)的引物有s 的定量PCR。hown。正向引物(STAT3"S"和"ΔS"),跨越外显子21和22之间的交界处,请点击此处查看该图的放大版本。
图 2: 的qPCR数据的扩增曲线 ( 一 )S形扩增曲线装置可靠扩增。从定量PCR获得含有STAT3Sα质粒两个连续稀释的这些数据,每一对代表重复稀释的样品的以上的40个循环(x轴)的过程中荧光水平彩色线条。最浓的样品(绿 - 灰色)充分通过循环17放大(与双链DNA结合染料成正比的荧光,在y轴上示出),以超过阈荧光值(baseli显示甲肾上腺素绿色箭头)。其Ct值是17,(b)非指数曲线表明背景荧光阈没有被正确建立的前几个周期。这可能是由于抑制剂,或高度浓缩的模板或引物的存在。 请点击此处查看该图的放大版本。
图3: 日志的标准曲线 VS 的Ct(STAT3Sα 的拷贝数 ),还有就是每个日志STAT3剪接变异体的拷贝数和循环阈值(CT)之间的线性关系。创建从质粒DNA的标准曲线模仿样品的cDNA和由此提供比稀释PCR扩增子创建了一个曲线更好的测量。给出的数据是由定量PCR含有STAT3Sα质粒两个连续稀释液获得的Ct值。从该曲线,存在于每个样品中的拷贝数可被内插,并且扩增效率计算(83.9%)。虽然y轴截距比坡度小于再现的,截距表明42.2循环将有必要是一定的无靶DNA存在。误差棒表示SEM,每组分别构建了STAT3Sβ,ΔSα和ΔSβ(未显示)3.可比曲线。 请点击此处查看该图的放大版本。
图4: 量化泛比较 STAT3 VS累计 STAT3 剪接变异体。加入STAT3剪接的变种回归VS STAT3总应该有坡度(泛的累积比率)和R 2的值(相关性)接近1的值从17个样品(嗜酸性粒细胞和DLBCL)包括在内。误差线表示的x到-Y测定的SEM,N≥2每个。图改编自参考20。 请点击此处查看该图的放大版本。
图 5:STAT3 剪接变异体水平波动过细胞因子治疗过程 ( 一 )饼图表示每个STAT3剪接变异体的百分比在IL3和TNFα治疗过程中嗜酸性粒细胞。 ( 二 - 五 )的变化的STAT3剪接变体在嗜酸性粒细胞与细胞因子的各种组合,通过组合的相对和绝对的qPCR数据测量处理的 STAT3Sα(b)中 ,Sβ(c)中 ,ΔSα(d)和ΔSβ(E)的水平。波动一段时间后的刺激。最初的水平增加,调峰6小时刺激后。该IL3 +TNFα引起的组合比单独IL3所有四个STAT3剪接变异体的高表达。 SEM每个数据点占误差传播计算。 请点击此处查看该图的放大版本。
表格1:用于扩增(a)中 ,绝对的(b)和相对的( 三 )定量PCR的引物。克隆引物有限制序列和5'-扩展高效切割。KpnI和NheI位限制性酶切位点以粗体表示。 请点击这里查看此表的放大版本。
表2. PCR循环参数(左)和试剂卷(右)扩增(一),相对的(B),绝对(三)定量PCR。 请点击这里查看此表的放大版本。
3 / 54473tbl3.jpg"/>
表3:模板绝对定量PCR质粒校准测定该测定是必要的,以评估再现性和效率,以及产生从中插数据的标准曲线。 "非目标"混音会给特异性的估计。优化可能需要实现的一致性。 请点击这里查看此表的放大版本。
表4:模板相对的qPCR(泛 STAT3 和管家基因 GUSB)校准测定不同于绝对定量PCR,该测定的点是确定在哪些扩增效率是〜100%的条件。tp_upload / 54473 / 54473tbl4large.jpg"目标="_空白">请点击这里查看此表的放大版本。
表5:。模板测量泛 STAT3 和看家基因 GUSB 相对定量PCR检测样品的标准曲线的样品重复在一起,以保证检测的效率相媲美,请点击这里查看此表的放大版本。
表6:模板,以测量S变种绝对定量PCR检测样品的标准曲线的样品重复在一起,以保证可比性EFF。该试验的iciency。 请点击这里查看此表的放大版本。
表7:。模板测量 ΔS变种 绝对定量PCR检测样品的标准曲线的样品重复在一起,以保证检测的效率相媲美,请点击这里查看此表的放大版本。
表8:模板测量泛 STAT3 绝对定量PCR样品检测 。large.jpg"目标="_空白">请点击这里查看此表的放大版本。
我们以评估在嗜酸性粒细胞和淋巴瘤细胞的水平和STAT3剪接变体转录物的比例和学习细胞因子刺激是否影响了水平和比例开发了这个协议。 STAT3是由于其多效性的和不确定的功能特别感兴趣的,具有相互冲突是否它作为在癌症的癌蛋白或肿瘤抑制的报告(参照33中综述)。在STAT3α和β剪接变异体的功能差异已被定性之前34,35,和我们的协议促进了击倒/重新表达分析表明,这需要所组成的最佳比例和ΔS成绩单19。
不同的剪接变异体的精确定量将促进有关异构STAT3功能剪接变异体组成的进一步调查。协议集成绝对和相对的qPCR数据,结合Ab的能力溶质的qPCR来计算剪接变体的比例,及相对的qPCR来测量总STAT3的表达的变化。这种方法允许人们在两个备选剪接位点相距多于50个核苷酸区分在序列的细微差别,并同时测量剪接比率。单独确定剪接事件的比例就不会产生一个共同的拼接偏压存在使得ΔSβ水平比如果两个站点的使用是随机剪接25预期更高的显着的发现。
重要的是,绝对定量PCR与使用质粒校准曲线使量化(在次最佳效率)可产生高度相似的序列拼接的变化。我们期待一个新的微妙拼接qPCR分析应该采取大约两个月的时间来进行优化。在检测开发的关键步骤是生成绝对定量PCR标准曲线用于STAT3质粒的建立;实验确定最佳的引物序列和循环参数,以确保特异性和重复性;和相对定量PCR数据的整合,从相对于GAPDH表达泛STAT3的表达量化的。拷贝数由泛STAT3与定量累计定量的相关性(Sα+ΔSα+Sβ+ΔSβ)表明,该协议产生可靠的结果。
该技术的需要注意的是广泛的验证过程。有必要评估测定内变异(重复性),批间变异性(再现性)和特异性。该协议概括的方式来获得这些参数的数字输出。我们认为效率≥75%,特异性因素≥4,变异(重复性)的系数≤10%及的Ct标准偏差(重复性)≤0.2为宜阈值30。在STAT3序列的氨基酸1-690突变或缺失不会discove通过该协议的红色,虽然他们可能会影响拼接比率。转录比例可能不成正比proteoform比例36。
由于样本有不同的总cDNA的起始量,绝对定量PCR适合使用,除非已建立的看家基因加上相对定量PCR样品中比较剪接变异体的拷贝数,但不适用于样本间的比较。该方法描述符合MIQE定量PCR准则重复性30。 PCR循环参数和引物的浓度可能需要进行修改,如果使用其它设备,以获得可再现的数据。完美的特异性不可能的,而不显着损害效率,但目标是由大于四量级的更有效的扩增。
线性DNA更容易不是圆形扩增。如果备用的质粒不能提供满意的标准曲线(R 2 <; 0.95),考虑之前的量化线性单网站限制的质粒。优化的qPCR为获得良好的质量的数据( 图1)是至关重要的。大多数的qPCR协议依赖于两个步骤的循环,和机器也相应进行了优化。加热块的非均匀加热可以在三步骤循环而加剧,有助于重复性差。试验必须带有过滤器的吸头和超纯水在无菌条件下成立,最好是在一个专用的层流罩。因为污染物可导致不一致的结果,测定应在有滤波器枪头和超纯水在无菌条件下成立,最好在专用层流罩。有关定量PCR优化的详细信息,请参阅巴斯廷等 32
量化STAT3可能导致一些环境的更深入的了解。 STAT3自动调节自身的表达37,和上述的协议可帮助阐明STAT3剪接变异体的比例是否有助于调节这一正反馈环。该协议可以被用作在不同密度38或以上的发展过程中细胞中观察到研究剪接变体的比率的变化:已知的是在造血16中蛋白质水平的STAT3α/β比的变化。 Sundin的等 。发现12号外显子的STAT3内含子单核苷酸多态性偏见拼接与工作综合征39患者。可以想象的是,存在于外显子21和22,或外显子22和23之间的内含子的许多个SNP中的一个可以分别向ΔS/ S的剪接比率和α/β。该测定可用于量化在癌细胞,其中突变或改变在剪接调控可能引入偏倚的剪接过程40 的STAT3转录。在剪接因子突变(象SF3B1),如OBSERVED骨髓增生异常综合征41也可能导致可通过该协议来衡量变化。
更广泛地说,该方法特异性检测共协会在剪接,这是不符合常规RNA测序,也不标准定量PCR可行。而相互排斥的外显子剪接的现象证明了的拼接决定协调,其他剪接事件的联合协会尚未精心研究。一个最近所描述的替代方法,其中,RNA测序被修改,以便询问全长cDNA,表明遥远剪接事件是多种共依赖性比以前认为的42。
STAT3包含了供体串联剪接位点。受体串联剪接位点是更频繁的43和概述协议的原理可以作为一个起点,显影测定法重合检测NAGNAG剪接和内200个核苷酸的其他剪接事件。其他POTENTiAl基合金的应用包括其他细微序列差异,如插入缺失或双/三核苷酸多态性44重合的定量。
The authors have nothing to disclose.
作者要感谢健康NHLBI的计划项目资助的国家研究院的嗜酸性粒细胞气道炎症和重塑的作用:P01HL088584(PI:N. Jarjour)和威斯康星州Carbone的癌症中心和医学系的大学对于校内资助。我们感谢道格拉斯·安妮斯克隆四个STAT3变种。
Name | Company | Catalog Number | Comments |
MJ Research PTC-200 Thermal Cycler | GMI | N/A | Used for standard PCR |
7500 Real-Time PCR System | Applied Biosystems | N/A | qPCR machine |
GS-6R | Beckman Coulter | N/A | centrifuge for 96-well plates |
Nanodrop 2000 sprectrophotometer | ThermoFisher Scientific | N/A | |
RPMI-1640 medium | Sigma Aldrich | R8758 | cell culture medium |
PfuTurbo DNA Polymerase | Agilent Technologies | 600410 | DNA polymerase for standard PCR |
KpnI | New England Biosciences | R0142S | |
NheI | New England Biosciences | R0131S | |
SYBR Green PCR Master Mix | Qiagen | 330523 | qPCR, DNA polymerase/dsDNA-binding dye mix |
Rneasy Mini Kit | Qiagen | 74204 | RNA extraction kit |
SuperScript III First-Strand Synthesis System | Invitrogen (ThermoFisher Scientific) | 18080-044 | cDNA synthesis kit |
Primers | Integrated DNA Technology | N/A | |
NEBuffer 1.1 | New England Biosciences | B7201S | |
GenePure LE Agarose | ISC BioExpress | E-3120-500 | component of TAE gel |
Pipettors | Major lab suppliers (MLS) | N/A | |
Filter pipette tips | Neptune Scientific | BT10XL, BT20, BT200 | |
EU One Piece Thin Wall Plate | MidSci | ABI7501 | |
ThermalSeal A Sealing Film | MidSci | TSA-100 | 96 well plate seal |
pET-Elmer (variant of pET-28a) | Novagen; modified in Mosher lab | N/A | Details in PMID: 20947497 |
Wizard Plus SV Minipreps DNA purification system | Promega | A1460 | Plasmid purification |
BigDye Terminator v3.1 Cycle Sequencing Kit | ThermoFisher Scientific | 4337455 | Sequencing kit |
QIAEX II Gel Extraction kit | Qiagen | 20021 | Amplicon purification |
DH5α competent cells | ThermoFisher Scientific | 18265-017 | available from several providers, see PMID: 2162051 |
kanamycin | Research Products International Corp. | K22000-5.0 | |
Tris base | ThermoFisher Scientific | BP152-5 | component of TAE buffer |
Acetic acid, glacial | ThermoFisher Scientific | A38C-212 | component of TAE buffer |
EDTA (Ethylenediaminetetraacetic acid) | Sigma Chemical Company (Sigma Aldrich) | E-5134 | component of TAE buffer |
Bacto Tryptone | BD Biosciences | 211705 | component of Luria Broth |
Bacto Yeast extract, technical | BD Biosciences | 288620 | component of Luria Broth |
Sodium chloride | ThermoFisher Scientific | S271-10 | component of Luria Broth |
Sodium hydroxide | ThermoFisher Scientific | SS255-1 | component of Luria Broth |
Bacto Agar | BD Biosciences | 214010 | component of Luria Broth plate |
Lasergene SeqBuilder | DNASTAR | Figure 1 generated using Lasergene SeqBuilder software version 12.2.0 (DNASTAR) |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。