JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里, 我们提出了一个设计和制造斑马鱼胚胎排列模板的协议, 然后详细的程序, 使用这种模板, 高吞吐量斑马鱼胚胎排列成96井板。

摘要

斑马鱼是全球公认的淡水有机体, 经常用于发展生物学、环境毒理学和人类疾病相关的研究领域。由于其独特的特点, 包括大的繁殖力, 胚胎半透明, 快速和同时发展,, 斑马鱼胚胎经常被用于对化学品进行大规模毒性评估和药物/复合筛查。一个典型的筛选程序涉及成年斑马鱼产卵, 胚胎选择, 并排列胚胎成多井板块。从那里, 胚胎受到接触和化学的毒性, 或者药物/化合物的有效性可以根据表型观察相对快速地评估。在这些过程中, 胚胎排列是限制吞吐量水平的最耗时和最耗费劳力的步骤之一。在本协议中, 我们提出了一种创新的方法, 使用一个 3 d 打印排列模板加上真空操作, 以加快这一艰巨的步骤。此处的协议描述了排列模板的总体设计, 详细的实验设置和分步过程, 随后有代表性的结果。在实施时, 这种方法应证明是有益的, 以斑马鱼胚胎作为测试对象的各种研究应用。

引言

斑马鱼作为一种流行的模型生物, 广泛应用于医学和毒物学领域1,2,3,4。与体外平台相比, 斑马鱼提供了更大的生物复杂性, 即一个或两种细胞无法提供。除了作为一个整体的生物模型, 斑马鱼的巨大繁殖力, 快速和同时胚胎发育, 和高器官半透明已经给这个模型独特的优势, 用于大规模毒性或药物/复合筛查5。一双成年斑马鱼每周生产的数以百计的胚胎超过了其他所有的动物模型, 并使其适合高通量筛选。

一个典型的筛选程序使用斑马鱼涉及大量的手工工作, 如成年斑马鱼产卵, 胚胎选择, 并排列胚胎进入适当的容器, 他们通过水浸泡暴露。对胚胎的发育进行监测, 可观察到的端点, 如死亡率、孵化率和异常, 通常是手动评估的, 并作为化学品毒性的初步鉴定或指示药物或化合物。为了加快筛选程序, 前面已经探讨了自动成像和计算机辅助图像分析等方法。例如, 具有高含量成像能力的显微镜已经适应了从96/384 井板6的不同发育阶段对斑马鱼胚胎进行自动亮场或荧光成像。微流控装置与显微镜结合使用, 用于定位斑马鱼幼虫通过当前操作的大脑神经元的成像7。与传统的手工操作相比, 这些方法可以显著提高图像获取的效率。此外, 在生成大量图像的同时, 还开发了图像分析工具以加快数据处理速度, 如刘et和 Tu et . 所示。8,9

随着成像和图像分析的吞吐量水平的提高, 显而易见的是, 筛查速率限制的步骤在于准备用于暴露的斑马鱼胚胎, 这通常意味着将它们排列到96或384井板中。为解决这一瓶颈步骤, Mandrell 开发了视觉导引机器人. 10和美国11以前替换手动处理, 但这些工具相当复杂, 并且有一个深入的学习曲线来实现这些技术。因此, 提供一种易于使用的方法成为进一步提高斑马鱼筛查吞吐量水平的一个重要因素, 是这项工作的主要目标。

在这项工作中, 我们设计和制造了一个胚胎排列模板3D 打印。这种排列模板的设计, 以诱捕斑马鱼胚胎进入水井, 符合标准的96井板。而不是选择胚胎和排列他们一个一个一个一个, 你可以执行胚胎诱捕和阵列所有96胚胎成一个多层板一次。使用这个模板和下面的协议, 你可以显著提高排列胚胎的效率到多层板, 这将在短期内提高筛选能力至少比手工操作。下面描述的协议包括排列模板、斑马鱼产卵、胚胎采集和排列的总体设计。图 1显示了排列模板的总体设计。图 2显示了使用部件3和4中描述的模板的分步协议概述。

研究方案

1. 斑马鱼胚胎排列模板的设计与制作

  1. 设计排列模板的 12, 8, 96 井布局, 适合一个标准的96井板。使用图 1A中列出的用于上胚卡压室的尺寸 (请参阅补充文件)。
    1. 使用在图 1B1D中显示的用于陷井的尺寸。
    2. 使用底部真空室的图 1C中的尺寸。
    3. 图 1B中的尺寸用于空气中/插座。
  2. 使用 3 d 打印机 (0.1 mm 精度) 打印模板;有关用于打印的推荐树脂, 请参阅材料表
    注意: 推荐使用 0.1 mm 精度的3D 打印机来制作排列模板 (请参阅材料表)。模板表面的建议颜色为深灰色或黑色。

2. 斑马鱼胚胎产卵

  1. 在产卵前的某一天放置两对雄性和雌性鱼。用透明的塑料分隔线将雄性和雌性分开。
  2. 在早上摘下分隔条, 将雄性和雌性鱼混合在一起。
  3. 用细网过滤器去除雄性和雌性鱼, 并收集鱼斑马的胚胎。用250毫升的鸡蛋水冲洗胚胎 (参见材料表)。
  4. 用 Holtfreter 的溶液将采集到的胚胎移植到培养皿 (直径90毫米) 上 (参见材料表), 并使用显微镜去除未受精的胚胎。
  5. 将胚胎放置在28.5 摄氏度的孵化器中。在 4 h 后受精 (hpf), 观察胚胎和清除任何死亡和不健康的胚胎。胚胎现在已经准备好下一步了。

3. 排列模板的制备

  1. 用500毫升去离子水冲洗模板2–3时间, 并把它放入烘干烤箱 (45 °c) 为5分钟。
  2. 用一块密封膜 (图 2, 步骤 1) 将底部腔带入磁带。
  3. 通过模板底部的风口连接真空泵。
    注: 推荐的真空泵最大真空度为0.1 兆帕。要注意使用的真空强度。如果负压过强, 则在密封膜上切开一个十字形孔, 以降低压力。

4. 将斑马鱼胚胎排列成96井板

  1. 使用塑料转移吸管, 将大约150个胚胎放置到模板中, 如图 2,步骤2所示。
  2. 将真空泵与风口连接, 以在步骤3.3 中密封膜密封的腔内产生负压。
  3. 水平摇动整个模板, 直到每个井都有一个胚胎被包埋 (图 2,步骤 3)。
    注: 如果 Holtfreter 的解决方案在每个井中被困之前都干涸了, 在诱捕室添加额外的 Holtfreter 溶液并重复此步骤。
  4. 丢弃未被埋在水井中的额外 Holtfreter 的解决方案和胚胎 (图 2,步骤 4)。
  5. 关闭并断开真空泵的连接。
  6. 将标准的96井板倒置到模板上 (图 2,步骤 5), 同时同时旋转两个 (图 2,步骤 6)。
  7. 点击模板底部或连接空气出口到压缩气体除尘可以将所有被困胚胎从模板转移到96井板 (图 2,步骤 6)。
  8. 重复步骤4.1 到 4.8, 准备额外的多井板。
  9. 取下密封膜, 用500毫升去离子水从上到下清洗模板3次, 供将来使用。
    注: 不要使用任何有机溶剂, 如乙醇, 清洁模板。

结果

图 3显示了典型的 3 d 打印的排列模板。本模板采用光敏树脂为原料, 由3D 打印机制成;用一层黑色颜料, 可以更好地对比胚胎的颜色。96口井 (12 8) 的位置设计为符合标准96井板。同样, 384 (24 乘 16) 井模板也可以使用相同的方法设计和制作。向上的房间稍大于标准的96井板, 以提供一个更好的配件。凹槽也被设计用来在排列期间容纳额外的胚胎。

讨论

该协议中有两个关键步骤需要密切注意, 以成功地实施 3 d 打印模板排列斑马鱼胚胎。

排列模板设计中最重要的因素是诱捕井。为了确保每个井中只有一个胚胎被困, 人们应该密切关注压井的直径和深度, 以及通孔的直径。建议的直径在一个典型的胚胎 (包括绒毛膜) 直径的1.5 到2倍之内。诱捕井的深度应在典型胚胎 (包括绒毛膜) 直径的2倍以内, 以避免在同一井中堆积胚胎。通?...

披露声明

作者在所描述的 3 d 打印模板上填写了一项专利。

致谢

这项工作得到了 "1000plan 青年" 计划的支持, 同济大学的创业基金, 以及21607115和21777116的自然科学基金 (Lin)。

材料

NameCompanyCatalog NumberComments
Zebrafish FacilityShanghai Haisheng Biotech Co., Ltd.Z-A-S5
Mating boxShanghai Haisheng Biotech Co., Ltd.
Wash Bottle, 500 mlSangon BiotechF505001-0001
Sodium chlorideVetecV900058-500G
Potassium ChlorideSinopharm Chemical Reagent Co.,Ltd10016318
Calcium chlorideSinopharm Chemical Reagent Co.,Ltd20011160
Sodium bicarbonate Vetecv900182-500G
Methylene Blue HydrateTCIM0501
Hydrochloric acidSinopharm Chemical Reagent Co.,Ltd10011008
Sea SaltsInstant OceanSS15-10
PipetterFisherbrand13-675M
Controlled Drop Pasteur PipetFisherbrand13-678-30
MicroscopeOLYMPUSSZ61
Biochemical incubatorShanghai Yiheng Scientific Instrument Co., Ltd.LRH-250
3D printerUnionTechLite600
Photosensitive resinUnionTechUTR9000
Vacuum pumpShanghai Yukang Scientific Instrument Co., Ltd.SHB-IIIA
Adhesive PCR Plate SealsSolarbioYA0245
96 well plateCostar3599
Multi 8-channel pipette 30 - 300 μlEppendorf3122000.051
Compressed Gas DusterShanghai Zhantu Chemical Co., Ltd.ST1005
DI WaterThermoGenPure Pro UV/UF
Drying ovenShanghai Yiheng Scientific Instrument Co., Ltd.BPG-9106A
System waterWater out of the facility’s water system
Egg waterDilute 60mg “Instant Ocean” sea salts and 0.25 mg/L methylene blue in 1 L DI water
Holtfreter’s solutionDissolve 7.0 g Sodium chloride (NaCl), 0.4 g Sodium bicarbonate (NaHCO3), 0.1 g Potassium Chloride (KCl), 0.235 g Calcium chloride (CaCl2.2H2O) in 1.9 L DI water. Adjust pH to 7 using HCl and adjust volume to 2 L using Di water

参考文献

  1. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  2. Leslie, M. Zebrafish larvae could help to personalize cancer treatments. Science. 357 (6353), 745-745 (2017).
  3. Lin, S., et al. Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent. ACS Nano. 9 (2), 2038-2048 (2015).
  4. Lin, S., et al. Aspect ratio plays a role in the hazard potential of ceo2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano. 8 (5), 4450-4464 (2014).
  5. Baraban, S. C., Dinday, M. T., Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nature Communications. 4, (2013).
  6. Lin, S., et al. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano. 5 (9), 7284-7295 (2011).
  7. Kuipers, J., Kalicharan, R. D., Wolters, A. H. G., van Ham, T. J., Giepmans, B. N. G. Large-scale Scanning Transmission electron microscopy (nanotomy) of healthy and injured zebrafish brain. Journal of Visualized Experiments. (111), (2016).
  8. Liu, R., et al. Automated Phenotype Recognition for Zebrafish Embryo Based In vivo High Throughput Toxicity Screening of Engineered Nano-Materials. PLoS One. 7 (4), (2012).
  9. Tu, X., et al. Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules. in CT Images with Convolutional Neural Network. Scientific Reports. 7, 8533 (2017).
  10. Mandrell, D., et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. Journal of Laboratory Automation. 17 (1), 66-74 (2012).
  11. Lin, S., Zhao, Y., Nel, A. E., Lin, S. Zebrafish: An in vivo model for nano EHS studies. Small. 9 (9-10), 1608-1618 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

1363 d

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。