A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol to design and fabricate a zebrafish embryo arraying template, followed by a detailed procedure on the use of such template for high throughput zebrafish embryo arraying into a 96-well plate.
The zebrafish is a globally recognized fresh water organism frequently used in developmental biology, environmental toxicology, and human disease related research fields. Thanks to its unique features, including large fecundity, embryo translucency, rapid and simultaneous development, etc., zebrafish embryos are often used for large scale toxicity assessment of chemicals and drug/compound screening. A typical screening procedure involves adult zebrafish spawning, embryos selection, and arraying the embryos into multi-well plates. From there, embryos are subjected to exposure and the toxicity of chemical, or the effectiveness of the drugs/compounds can be evaluated relatively quickly based on phenotypic observations. Among these processes, embryos arraying is one of the most time-consuming and labor-intensive steps that limits the throughput level. In this protocol, we present an innovative approach that makes use of a 3D-printed arraying template coupled with vacuum manipulation to speed up this laborious step. The protocol herein describes the overall design of the arraying template, a detailed experimental setup and step-by-step procedure, followed by representative results. When implemented, this approach should prove beneficial in a variety of research applications using zebrafish embryos as testing subjects.
As a popular model organism, zebrafish is widely used in the fields of medicine and toxicology1,2,3,4. Compared to in vitro platforms, zebrafish offer much greater biological complexities that one or two cell types could not offer. Besides being a whole organism model, the zebrafish's large fecundity, rapid and simultaneous embryonic development, and high organ translucency have given this model unique advantages to be used for large scale toxicity or drugs/compound screening5. The hundreds of embryos produced by one pair of adult zebrafish each week surpass any other whole animal models and have made it suitable for high throughput screening.
A typical screening procedure using zebrafish involves a significant amount of manual work, such as adult zebrafish spawning, embryo selection, and arraying embryos into suitable containers where they are subjected to exposure through water immersion. The development of the embryos is monitored and observable endpoints such as mortality, hatchability and abnormality are often evaluated manually and used as the preliminary identifications of the toxicity of chemicals or indications of the effectiveness of drugs or compounds. To speed up the screening procedure, approaches such as automated imaging and computer-assisted image analysis have been explored previously. For example, microscopes with high content imaging capabilities have been adapted to perform automated bright-field or fluorescence imaging on zebrafish embryos at various developmental stages from 96/384 well plates6. Microfluidic devices coupled with microscopes were used to position zebrafish larvae through current manipulation for imaging of brain neurons7. These approaches could significantly improve the efficiency of image acquisitions compared to traditional manual operation. Moreover, with large number of images being generated, image analysis tools have also been developed to speed up the data processing, as demonstrated by Liu et al. and Tu et al.8,9.
As the throughput level of imaging and image analysis increases, it became clear that the rate-limiting step for screening lies in the process of preparing zebrafish embryos for exposure, which typically means arraying them into 96- or 384-well plates. To solve this bottleneck step, vision-guided robotics were developed by Mandrell et al.10 and us11 previously to replace manual handling but the instruments were rather sophisticated and there is a deep learning curve to implement such techniques. Therefore, to provide an easy-to-use approach becomes one important factor to further improve the throughput level of zebrafish screening and is the main objective of this work.
In this work, we designed and fabricated an embryo arraying template by 3D printing. Such an arraying template was designed to entrap zebrafish embryo into wells that fit with a standard 96-well plate. Instead of selecting embryos and arraying them into individual well one by one, one could perform embryo entrapment and array all 96 embryos into a multiwall plate at once. Using this template and the following protocol, one could significantly increase the efficiency of arraying embryos into multiwall plates, which would in term boost the screening capacity at least tenfold, compared to manual operation. The protocol described below includes an overall design for the arraying template, zebrafish spawning, embryo collection, and arraying. Figure 1 shows the overall design of the arraying template. Figure 2 shows an overview of the step-by-step protocol on using the template described in Parts 3 and 4.
1. Design and Fabrication of a Zebrafish Embryos Arraying Template
2. Zebrafish Embryo Spawning
3. Preparation of Arraying Template
4. Arraying Zebrafish Embryos into a 96-well plate
Figure 3 shows a typical 3D-printed arraying template. This template uses photosensitive resin as raw material and was made by a 3D printer; a layer of black paint was applied to provide a better contrast to the color of embryos. The position of 96 wells (12 by 8) was designed to fit with a standard 96-well plate. Similarly, a 384 (24 by 16) well template could also be designed and fabricated using the same method. The upside chamber was slightly bigger than ...
There are two critical steps in this protocol that require close attention for a successful implementation of 3D-printed template for arraying zebrafish embryos.
The most important factor on the design of the arraying template is the entrapment well. To makes sure there is only one embryo trapped in each well, one should pay close attention to the diameter and the depth of the entrapment well, and the diameter of the through hole. The recommended diameter is within 1.5 to 2 times of the diamet...
The authors have filled a patent on the described 3D-printed template.
This work was supported by the "1000plan Youth" program, the Startup Funds from Tongji University, and NSFC Grant# 21607115 and 21777116 (Lin).
Name | Company | Catalog Number | Comments |
Zebrafish Facility | Shanghai Haisheng Biotech Co., Ltd. | Z-A-S5 | |
Mating box | Shanghai Haisheng Biotech Co., Ltd. | ||
Wash Bottle, 500 ml | Sangon Biotech | F505001-0001 | |
Sodium chloride | Vetec | V900058-500G | |
Potassium Chloride | Sinopharm Chemical Reagent Co.,Ltd | 10016318 | |
Calcium chloride | Sinopharm Chemical Reagent Co.,Ltd | 20011160 | |
Sodium bicarbonate | Vetec | v900182-500G | |
Methylene Blue Hydrate | TCI | M0501 | |
Hydrochloric acid | Sinopharm Chemical Reagent Co.,Ltd | 10011008 | |
Sea Salts | Instant Ocean | SS15-10 | |
Pipetter | Fisherbrand | 13-675M | |
Controlled Drop Pasteur Pipet | Fisherbrand | 13-678-30 | |
Microscope | OLYMPUS | SZ61 | |
Biochemical incubator | Shanghai Yiheng Scientific Instrument Co., Ltd. | LRH-250 | |
3D printer | UnionTech | Lite600 | |
Photosensitive resin | UnionTech | UTR9000 | |
Vacuum pump | Shanghai Yukang Scientific Instrument Co., Ltd. | SHB-IIIA | |
Adhesive PCR Plate Seals | Solarbio | YA0245 | |
96 well plate | Costar | 3599 | |
Multi 8-channel pipette 30 - 300 μl | Eppendorf | 3122000.051 | |
Compressed Gas Duster | Shanghai Zhantu Chemical Co., Ltd. | ST1005 | |
DI Water | Thermo | GenPure Pro UV/UF | |
Drying oven | Shanghai Yiheng Scientific Instrument Co., Ltd. | BPG-9106A | |
System water | Water out of the facility’s water system | ||
Egg water | Dilute 60mg “Instant Ocean” sea salts and 0.25 mg/L methylene blue in 1 L DI water | ||
Holtfreter’s solution | Dissolve 7.0 g Sodium chloride (NaCl), 0.4 g Sodium bicarbonate (NaHCO3), 0.1 g Potassium Chloride (KCl), 0.235 g Calcium chloride (CaCl2.2H2O) in 1.9 L DI water. Adjust pH to 7 using HCl and adjust volume to 2 L using Di water |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved