JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

介绍了一种可靠且易于重现的方法,用于制备可功能的近红外发光金纳米簇,并通过流细胞学和共聚焦激光扫描显微镜直接检测HeLa细胞内部。

摘要

在过去十年中,荧光金纳米簇(AuNCs)在生物应用中越来越受欢迎,并致力于其开发。在该协议中,详细介绍了一种最近开发的制备水溶性、生物相容性和胶体稳定近红外发光AuNCs的方法。这种室温自下而上的化学合成提供了易于功能的AuNCs,在水溶液中用三氯酸和三醇改性聚乙烯乙二醇盖住。合成方法既不需要有机溶剂或附加配体交换,也不需要丰富的合成化学知识来繁殖。由此产生的AuNCs提供免费表面碳碱酸,可与具有自由胺组的各种生物分子一起进行功能化,而不会对AuNCs的光致发光特性产生不利影响。还描述了HeLa细胞对AuNC摄取的流细胞程定量和共聚焦显微成像的快速、可靠的过程。由于斯托克斯发生大移位,因此,为了有效检测AuNC的近红外光致发光,必须正确设置流式细胞学和共聚焦显微镜中的滤波器。

引言

在过去十年中,超小型(±2 nm)光致发光金纳米簇(PL AuNC)已成为基础研究和实际,,应用11、2、3、4、5、6、7、8、9、102的有前途的探针。10,8,9,5,6,7,34其许多理想的特性包括高光稳定性、可调发射最大值、长发射寿命、大斯托克斯移位、低毒性、良好的生物相容性、肾间隙和方便的生物结合。PL AuNCs 可以提供从蓝色到近红外 (NIR) 光谱区域的光致发光,具体取决于星团11内的原子数和表面配体12的性质。NIR(650-900 nm)发射AuNCs对于细胞和组织的长期体外和体内成像特别有希望,因为它们提供高信噪比,因为与内在自荧光的最小重叠、散射和吸收较弱以及NIR光13、14,14的组织渗透率高。

近年来,利用Au-S共价相互作用的各种方法已经开发出来,以制备含有各种含Thiol配体的NIR-PL AuNCs13、15、16、17。13,15,16,17对于生物医学应用,AuNCs 必须使用生物成分进行功能化,以促进结合相互作用。因此,高胶体稳定性且在水溶剂中易于功能的 AuN 是极可取的。本协议的总体目标是描述先前报告的18种AuNCs制备,其表面具有可功能的碳化物酸组,在水环境中详细采用三氯酸和聚乙烯乙二醇(PEG),并与遵循酸-a胺耦合法的具有原胺的分子结合。由于合成的方便性和高可重复性,这种协议可以由非化学背景的研究人员使用和调整。

AuNC 在生物医学研究中的应用的关键要求之一是能够观察和测量细胞内的 AuNC。在监测纳米粒子被细胞接受的方法中,流细胞学(FCM)和共聚焦激光扫描显微镜(CLSM)提供了稳健、高通量的方法,能够快速测量大量细胞中荧光纳米材料的内化这里还介绍了FCM和CLSM直接测量和分析细胞内PL AuN的方法,无需额外的染料。

Access restricted. Please log in or start a trial to view this content.

研究方案

1. 制备近红外发射AuNC (1)

  1. 加入7.8毫克(37.8μmol)三基酸(TA)和60μL的2米NaOH到23.4 mL的超纯水(25°C的电阻率18.2 MΩ.cm),搅拌(至少1000 rpm),直到完全溶解(±15-20分钟)。为了更快地溶解 TA,将混合物声波。对于合成,建议使用新鲜准备的 TA 解决方案。
  2. 将10.2 μL的HAuCl4+3H2O(470mg/mL)的水溶液添加到溶液中。
  3. 15分钟后,在剧烈搅拌(至少1,0004 rpm)下加入480μL的NaBH 4(1.9mg/mL),并在相同条件下搅拌反应混合物过夜。
    注:在冰冷的超纯水中新鲜制备NaBH4溶液,并在制备后立即加入反应混合物。
    注:AuN 的合成很容易扩展。单个批次中合成了多达 2 L 的 AuNC,粒子的光学特性没有任何变化。
  4. (关键)第二天,使用分子量截止3 kDa的膜过滤装置,采用三个离心/过滤周期来净化溶液。如果没有此纯化程序,以下步骤将无法正常工作。
  5. 在溶液中加入三醇端端聚乙烯乙二醇(MW 2,000;15.6毫克;7.8μmol),将pH值调整到7-7.5,并搅拌混合物过夜以获得1。使用分子量截止3 kDa的膜过滤装置,采用三个离心/过滤周期,净化分散。
    注:将 pH 调整为 7-7.5 非常重要。较高的 pH 值可能导致最大排放的蓝色偏移。

2. 在1表面结合3(氨基丙基)三氟磷酸(TPP)

  1. 混合前步准备的1种溶液(24 mL)和3(氨基丙基)溴化三氟化磷酸(12毫克,±30μmol)。使用 1 M HCl 将 pH 调整到 4.5。
    注:3-(氨基丙酮)三磷酸(TPP)溴化盐制备,如文献20所述。
  2. 通过添加过量的N-(3-二甲基-氨基丙基)-N+-N乙基卡博迪米德盐酸(EDC])来开始反应。 NHCl)(60毫克,312μmol)。解决方案的 pHH 将增加,不应允许超过 6。监测反应混合物的第一小时pH。如果 pH 高于 6,则通过添加 1 M HCl 将其降低至 4.5⁄6。
  3. 在室温下搅拌反应混合物过夜。
  4. 使用分子量截止3 kDa的膜过滤装置,采用三个离心/过滤周期来净化分散体,以获得2个。稀释2在这里获得与超纯水的初始体积为24 mL。溶液中的Au浓度为200微克/mL。

3. 细胞培养

  1. Dulbecco改良的鹰中培养HeLa细胞(HPA培养集合),在37°C的5%CO2中补充10%的胎儿牛2血清。
  2. 当细胞达到+80%汇合时,它们分裂并通过它们。为了尽量减少新突变体的获取,细胞传播的数量不应超过30。

4. AuNC 内化到 HeLa 细胞中

  1. 以20,000个细胞/mL(1 mL/孔)的密度在12孔板中播种细胞。目标是在 48 小时后实现 ±50% 的汇合。
  2. 在48小时播种后,将培养介质吸气,并在400μL的完整培养介质(处理过的样品)中加入400μL的完整培养介质(用于未经处理的控制)或500μg的纳米颗粒。这些培养介质为400μL的完整培养介质(处理过的样品)。将培养物返回到 37 °C 孵化器。
    注: 加入大量 AuNC 溶液会对细胞的可行性产生负面影响。AuNC 解决方案需要集中使用。因此步骤 2.4 中获得的 2 浓缩为 100 倍。40 mL AuNC 浓缩到 400 μL。在400μL细胞培养培养培养基中加入这种浓缩溶液的25μL等位,以获得所需的AuNC浓度。
  3. 2h内化后,根据制造商的协议,通过标准胰蛋白酶分离细胞。
  4. 在聚丙烯微离心管和离心机中采集样品5分钟,在4°C下以350 x g。
  5. 制备以下FCM缓冲液:预冷却磷酸盐缓冲盐水(PBS;137 mM NaCl,2.7 mM KCl,4.3 mM Na2HPO 4,1.47 mM NaH2PO4,pH7.4),补充2%牛血清白蛋白在4°C。4
  6. 用 1 mL FCM 缓冲液清洗颗粒,在 4 °C 下以 350 x g的速度将离心机清洗 5 分钟。
  7. 在分析前将颗粒重新悬浮在500μL的FCM缓冲液中,并将样品储存在4°C。

5. 流动细胞学分析

  1. 使用带细胞滤网盖的 5 mL 聚苯乙烯圆底管过滤所有样品。
  2. 在使用仪器软件获取数据之前,请指定细胞仪配置。
  3. 格式化所有点图和直方图的"收购"。
  4. 绘制正向散射区域 (FSC-A) 和侧散射区域 (SSC-A) 的双参数点图,以显示单元格的分布。要排除双精度值,请创建 FSC 高度 (FSC-H) 与 FSC-A 的双参数点图。要监测样品的相对荧光强度,绘制荧光通道区域(FL-A)的单参数直方图。使用线性比例来描述 FSC 和 SSC 数据,以及所有荧光参数的对数比例。
  5. 以低流速采集未经处理的样品(不含纳米颗粒),以尽量减少重合事件(如果仪器允许)。在采集过程中,调整光倍增管 (PMT) 电压,使未经处理的填充在 FSC vs SSC 图上达到比例。如有必要,调整 FL 通道的 PMT 电压,将未染色的填充物放在直方图的左角。
  6. 选择软件中的特定"门卡舌",并在所需填充点周围绘制适当的门。大门内的单元格将移动到下一个检查点。
  7. 每个样本记录 10,000 个事件。
  8. 在同一仪器设置下记录所有样品。
  9. 使用适当的程序分析流细胞测量数据。
    注: 某些应用程序可能需要自定义设置筛选器。对于过滤器交换,请始终遵循用户指南中的制造商建议。
    注: 可以保存和重新加载实验,以保留仪器设置和浇注策略。
    注: 侧散射高度 (SSC-H) 与侧散射区域 (SSC-A) 图也可用于双散。这种类型的浇注可能更敏感,因为 FSC 探测器通常不是 PMT。

6. 将2个内化到HeLa细胞内,用于共聚焦激光扫描显微镜(CLSM)

  1. 将细胞放在4室玻璃底部35毫米的盘子上,密度为250,000细胞/mL(0.5 mL/室)。将造型室保持在 37 °C 孵化器中,营造 5% 的 CO2气氛。目标是在 24 小时后实现 ±50% 的汇合。
  2. 在播种后24小时,在每个含有0.5 mL的中细胞(处理过的样品)的皿室中加入100 μg2(或10μL从10mg/mL的库存溶液中)。
  3. 将盘子还给孵化器。在将 AuNC 用于 CLSM 之前,让细胞内部化 24 小时。
  4. 内化期后,丢弃介质,用预热的新鲜介质清洗细胞5分钟。再次重复洗涤步骤。然后用800 μL的新鲜介质填充每个腔室。

7. CLSM 成像带 2 标记的活希拉细胞

  1. 对于显微成像,使用 63 倍油 (n = 1.518) 客观透镜 (NA = 1.4) 与平面-同色马特共聚焦显微镜。
  2. 将盘子安装在显微镜倒置的舞台上,室加热至37°C,并随附加湿5%CO2气氛。
  3. 要检测内化 AuNC,请使用功率为 2% 的 405 nm 激光器,并配备适当的分束器。将检测波长范围设置为 650 到 760 nm。
  4. 将图像的分辨率设置为 2048 x 2048 像素。在采集速度设置中,瞄准4 μs左右的像素驻留在时间。 以2倍平均(线模式,平均法均值)获取图像。将针孔设置为 1 气单元(对于 405 nm 光)。要获得更高的灵敏度,请使用光子计数模式。
  5. 要在带差分干扰对比度 (DIC) 的传输光中进行正确的照明,请使用克勒设置冷凝器和现场停止。对于采集传输的光,在未分配任何荧光探测器的情况下,使用功率为 0.7% 的 488 nm 激光器。为激光波长设置适当的光束分割器。
  6. 为每个轨道获取两个图像(红色荧光和 DIC)。跟踪AuN公司的红色荧光;细胞边界很容易在传输的光与DIC图片确定。

Access restricted. Please log in or start a trial to view this content.

结果

NIR PL AuNC 是在 TA 存在的情况下从 Au3+准备的,然后在 AuNC 表面上绑定了三醇端接的 PEG (MW 2,000),以按照图 1所示的工作流获得1。1和3(氨基丙基)三磷酸(TPP)溴化物之间的阿米里质耦合提供2。正如预期的那样,吸收光谱(图2a)表明,AuNCs 12没有特征的表面质粒带,并且...

Access restricted. Please log in or start a trial to view this content.

讨论

使用自下而上的方法合成了排放近红外的AuNCs,其中黄金前体溶液(HAuCl4)用合适的三醇配体处理,然后减少Au3+。水溶液中的金属离子的减少往往聚集并产生大纳米粒子,而不是超小的NCs21。为了制备超小(±2 nm)的PL AuN,对合成条件进行了调整,以防止形成大颗粒,促进超小簇的形成。用来盖住AuNC表面的配体的性质在影响粒子12、22、23、24、25、26、27、28、29、...

Access restricted. Please log in or start a trial to view this content.

披露声明

Pramanik等人曾在本文中介绍了这些方法和结果的某些部分。作者声明没有相互竞争的财务利益。

致谢

作者感谢阿尔兹贝塔·马格多列诺娃在流细胞学方面的帮助。作者承认GACR项目Nr.18-12533S的财政支持。显微镜由欧洲区域发展基金和捷克共和国国家预算共同资助的共聚焦和荧光显微镜实验室进行,项目没有。CZ.1.05/4.1.00/16.0347 和 CZ.2.16/3.1.00/21515,并得到捷克-生物成像大型 RI 项目 LM2015062 的支持。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochlorideTCI ChemicalsD1601https://www.tcichemicals.com/eshop/en/eu/commodity/D1601/;jsessionid=3AD046E5389206AAE33C8AAB5036CDD6?gclid=CjwKCAjwiZnnBRBQEiwAcWKfYrO69K6Np3tYeSsAouqGndUvzzsy1hStBPuHG-X3cpTIsAqq9z0cDBoC76MQAvD_BwE
Bovine serum albuminSigma-AldrichA4161https://www.sigmaaldrich.com/catalog/product/sigma/a4161?lang=en&region=CZ
Disodium hydrogen phosphate dihydratePENTA s.r.o.15130-31000https://www.pentachemicals.eu/soubory/specifikace/specifikace_281.pdf
DL-Thioctic acid, 98%Alfa AesarL04711https://www.alfa.com/en/catalog/L04711/
Hydrochloric acid 35%PENTA s.r.o.19350-11000https://www.pentachemicals.eu/soubory/specifikace/specifikace_512.pdf
Hydrogen tetrachloroaurate(III) trihydrate, ACS, 99.99% (metals basis), Au 49.0% minAlfa Aesar36400https://www.alfa.com/en/catalog/036400/
O-(2-Mercaptoethyl)-O′-methylpolyethylene glycol 2000Sigma-Aldrich743127https://www.sigmaaldrich.com/catalog/product/aldrich/743127?lang=en&region=CZ
Potassium chloridePENTA s.r.o.16200-31000https://www.pentachemicals.eu/soubory/specifikace/specifikace_346.pdf
Sodium borohydrideSigma-Aldrich452882https://www.sigmaaldrich.com/catalog/product/aldrich/452882?lang=en&region=CZ&gclid=CjwKCAjwiZnnBRBQEiwAcWKfYuoZKvdK_fH24F1gGugG4pamF2FFZLd36YyZmRTdGgkbm5SbyGP0jBoCoo0QAvD_BwE
Sodium chloridePENTA s.r.o.16610-31000https://www.pentachemicals.eu/soubory/specifikace/specifikace_376.pdf
Sodium dihydrogenphosphate dihydratePENTA s.r.o.12330-31000https://www.pentachemicals.eu/soubory/specifikace/specifikace_124.pdf
Sodium hydroxide pelletsPENTA s.r.o.15740-31000https://www.pentachemicals.eu/soubory/specifikace/specifikace_307.pdf
XTT (sodium 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt)Thermo Fisher ScientificX12223https://www.thermofisher.com/order/catalog/product/X12223#/X12223

参考文献

  1. Wang, Y., Chen, J., Irudayaraj, J. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nano. 5 (12), 9718-9725 (2011).
  2. Chen, L. Y., Wang, C. W., Yuan, Z., Chang, H. T. Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Analytical Chemistry. 87 (1), 216-229 (2015).
  3. Dongyun, C., Zhentao, L., Li, N., Lee, J. Y., Xie, J., Lu, J. Jianmei Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Advanced Functional Materials. 23 (35), 4324-4331 (2013).
  4. Tan, X., Jin, R. Ultrasmall metal nanoclusters for bio-related applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 5 (6), 569-581 (2013).
  5. Yuan, X., Luo, Z., Yu, Y., Yao, Q., Xie, J. Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chemistry - An Asian Journal. 8 (5), 858-871 (2013).
  6. Zheng, K., Setyawati, M. I., Leong, D. T., Xie, J. Antimicrobial Gold Nanoclusters. ACS Nano. 11 (7), 6904-6910 (2017).
  7. Li, Q., et al. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale. 10 (21), 10166-10172 (2018).
  8. Zhang, X. D., et al. Ultrasmall Au10-12(SG)10-12 Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Advanced Materials. 26 (26), 4565-4568 (2014).
  9. Zhang, X. D., et al. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports. 5, 8669(2015).
  10. Zhang, X. D., et al. Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy. Advanced Healthcare Materials. 3 (1), 133-141 (2014).
  11. Zheng, J., Zhang, C., Dickson, R. M. Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Physical Review Letters. 93 (7), 077402(2004).
  12. Wu, Z., Jin, R. On the Ligand's Role in the Fluorescence of Gold Nanoclusters. Nano Letters. 10 (7), 2568-2573 (2010).
  13. Lin, C. A. J., et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano. 3 (2), 395-401 (2009).
  14. Yang, L., Shang, L., Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale. 5 (4), 1537-1543 (2013).
  15. Mishra, D., et al. Aqueous Growth of Gold Clusters with Tunable Fluorescence Using Photochemically Modified Lipoic Acid-Based Ligands. Langmuir. 32 (25), 6445-6458 (2016).
  16. Wu, Z., Gayathri, C., Gil, R. R., Jin, R. Probing the Structure and Charge State of Glutathione-Capped Au25(SG)18 Clusters by NMR and Mass Spectrometry. Journal of the American Chemical Society. 131 (18), 6535-6542 (2009).
  17. Stamplecoskie, K. G., Kamat, P. V. Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity. Journal of the American Chemical Society. 136 (31), 11093-11099 (2014).
  18. Pramanik, G., et al. Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale. 10 (8), 3792-3798 (2018).
  19. Salvati, A., et al. Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact. 9, 42-50 (2018).
  20. Zhang, C. J., et al. Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angewandte Chemie. 128 (44), 13974-13978 (2016).
  21. Shang, L., Dong, S., Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today. 6 (4), 401-418 (2011).
  22. Higaki, T., et al. Controlling the Atomic Structure of Au30 Nanoclusters by a Ligand-Based Strategy. Angewandte Chemie International Edition. 55 (23), 6694-6697 (2016).
  23. Li, G., et al. Tailoring the Electronic and Catalytic Properties of Au25 Nanoclusters via Ligand Engineering. ACS Nano. 10 (8), 7998-8005 (2016).
  24. Kim, A., Zeng, C., Zhou, M., Jin, R. Surface Engineering of Au36(SR)24 Nanoclusters for Photoluminescence Enhancement. Particle & Particle Systems Characterization. 34 (8), 1600388(2017).
  25. Chevrier, D. M., et al. Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. Journal of the American Chemical Society. 140 (45), 15430-15436 (2018).
  26. Yuan, X., Goswami, N., Chen, W., Yao, Q., Xie, J. Insights into the effect of surface ligands on the optical properties of thiolated Au25 nanoclusters. Chemical Communications. 52 (30), 5234-5237 (2016).
  27. Yuan, X., Goswami, N., Mathews, I., Yu, Y., Xie, J. Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Research. 8 (11), 3488-3495 (2015).
  28. Jiang, J., et al. Oxidation at the Core-Ligand Interface of Au Lipoic Acid Nanoclusters That Enhances the Near-IR Luminescence. The Journal of Physical Chemistry C. 118 (35), 20680-20687 (2014).
  29. Padelford, J. W., Wang, T., Wang, G. Enabling Better Electrochemical Activity Studies of H2O-Soluble Au Clusters by Phase Transfer and a Case Study of Lipoic-Acid-Stabilized Au22. ChemElectroChem. 3 (8), 1201-1205 (2016).
  30. Wang, T., Wang, D., Padelford, J. W., Jiang, J., Wang, G. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters. Journal of the American Chemical Society. 138 (20), 6380-6383 (2016).
  31. Aldeek, F., Muhammed, M. A. H., Palui, G., Zhan, N., Mattoussi, H. Growth of Highly Fluorescent Polyethylene Glycol- and Zwitterion-Functionalized Gold Nanoclusters. ACS Nano. 7 (3), 2509-2521 (2013).
  32. Oh, E., Susumu, K., Goswami, R., Mattoussi, H. One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities. Langmuir. 26 (10), 7604-7613 (2010).
  33. Nair, L. V., Nazeer, S. S., Jayasree, R. S., Ajayaghosh, A. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters. ACS Nano. 9 (6), 5825-5832 (2015).
  34. Porret, E., et al. Hydrophobicity of Gold Nanoclusters Influences Their Interactions with Biological Barriers. Chemistry of Materials. 29 (17), 7497-7506 (2017).
  35. Shang, L., et al. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging. Small. 7 (18), 2614-2620 (2011).
  36. Wu, M., et al. Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. Journal of the American Chemical Society. 141 (10), 4316-4327 (2019).
  37. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology. 22 (8), 969-976 (2004).
  38. Bartczak, D., Kanaras, A. G. Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir. 27 (16), 10119-10123 (2011).
  39. Dutta, D., Sailapu, S. K., Chattopadhyay, A., Ghosh, S. S. Phenylboronic Acid Templated Gold Nanoclusters for Mucin Detection Using a Smartphone-Based Device and Targeted Cancer Cell Theranostics. ACS Applied Materials & Interfaces. 10 (4), 3210-3218 (2018).
  40. Retnakumari, A., et al. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology. 22 (28), 285102(2011).
  41. Pyo, K., et al. Highly Luminescent Folate-Functionalized Au22 Nanoclusters for Bioimaging. Advanced Healthcare Materials. 6 (16), 1700203(2017).
  42. Fernández, T. D., et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 43, 1-12 (2015).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

157

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。