A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A reliable and easily reproducible method for preparation of functionalizable, near-infrared emitting photoluminescent gold nanoclusters and their direct detection inside HeLa cells by flow cytometry and confocal laser scanning microscopy is described.
Over the past decade, fluorescent gold nanoclusters (AuNCs) have witnessed growing popularity in biological applications and enormous efforts have been devoted to their development. In this protocol, a recently developed, facile method for preparation of water soluble, biocompatible, and colloidally stable near-infrared emitting AuNCs have been described in detail. This room-temperature, bottom-up chemical synthesis provides easily functionalizable AuNCs capped with thioctic acid and thiol-modified polyethylene glycol in aqueous solution. The synthetic approach requires neither organic solvents or additional ligand exchange nor extensive knowledge of synthetic chemistry to reproduce. The resulting AuNCs offer free surface carboxylic acids, which can be functionalized with various biological molecules bearing a free amine group without adversely affecting the photoluminescent properties of the AuNCs. A quick, reliable procedure for flow cytometric quantification and confocal microscopic imaging of AuNC uptake by HeLa cells also been described. Due to the large Stokes shift, proper setting of filters in flow cytometry and confocal microscopy is necessary for efficient detection of near-infrared photoluminescence of AuNCs.
In the past decade, ultrasmall (≤ 2 nm) photoluminescent gold nanoclusters (PL AuNCs) have emerged as promising probes for both fundamental research and practical applications1,2,3,4,5,6,7,8,9,10. Their many desirable characteristics include high photostability, tunable emission maxima, long emission lifetimes, large Stokes shifts, low toxicity, good biocompatibility, renal clearance and facile bioconjugation. PL AuNCs can provide photoluminescence from the blue to the near-infrared (NIR) spectral region, depending on the number of atoms within the cluster11 and the nature of the surface ligand12. NIR (650-900 nm) emitting AuNCs are particularly promising for long-term in vitro and in vivo imaging of cells and tissues, as they offer high signal-to-noise ratio due to minimum overlap with intrinsic autofluorescence, weaker scattering and absorption, and high tissue penetration of NIR light13,14.
In recent years, various approaches that take advantage of Au-S covalent interactions have been developed to prepare NIR-PL AuNCs capped with a variety of thiol-containing ligands13,15,16,17. For biomedical applications, AuNCs must be functionalized with a biological component to facilitate binding interactions. Thus, AuNCs with high colloidal stability that are easily functionalizable in aqueous solvent are highly desirable. The overall goal of the current protocol is to describe a previously reported18 preparation of AuNCs with a functionalizable carboxylic acid group on the surface by employing thioctic acid and polyethylene glycol (PEG) in an aqueous environment in detail and their conjugation with molecules bearing a primary amine following the acid-amine coupling method. Because of the ease of synthesis and high reproducibility, this protocol can be used and adapted by researchers from non-chemistry backgrounds.
One of the key requisites for applications of AuNCs in biomedical research is the ability to observe and measure AuNCs inside cells. Among the methods available to monitor nanoparticle uptake by cells, flow cytometry (FCM) and confocal laser scanning microscopy (CLSM) offer robust, high-throughput methods which allow fast measurements of internalization of fluorescent nanomaterials in large number of cells19. Here, FCM and CLSM method for direct measurement and analysis of PL AuNCs inside cells, without the need for additional dyes, have also been presented.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of near-infrared emitting AuNCs (1)
2. Conjugation of 3-(aminopropyl)triphenylphosphonium bromide (TPP) on the surface of 1
3. Cell culture
4. AuNC internalization into HeLa cells
5. Flow cytometry analysis
6. Internalization of 2 into HeLa cells for confocal laser scanning microscopy (CLSM)
7. CLSM Imaging of live Hela cells labeled with 2
Access restricted. Please log in or start a trial to view this content.
NIR PL AuNCs were prepared from Au3+ in the presence of TA, and then thiol-terminated PEG (MW 2,000) was bound on the AuNC surface to obtain 1 following the workflow shown in Figure 1. Amidic coupling between 1 and 3-(aminopropyl) triphenylphosphonium (TPP) bromide provided 2. As expected, absorption spectra (Figure 2a) indicated that AuNCs 1 and 2 do not have a chara...
Access restricted. Please log in or start a trial to view this content.
NIR-emitting AuNCs were synthesized using a bottom-up approach in which the gold precursor solution (HAuCl4) was treated with suitable thiol ligands, followed by reduction of Au3+. Reduction of metal ions in aqueous solution tend to aggregate and results in large nanoparticles rather than ultrasmall NCs21. To prepare ultrasmall (≤2 nm) PL AuNCs, the synthetic conditions were adjusted to prevent formation of large particles and promote formation of ultrasmall clusters. T...
Access restricted. Please log in or start a trial to view this content.
Some portions of the methods and results were previously presented in the article by Pramanik et al.18 Here, these methods have been converted into practical point-by-point protocols. The authors declare no competing financial interests.
The authors are grateful to Alzbeta Magdolenova for her help with flow cytometry. The authors acknowledge the financial support from GACR project Nr. 18-12533S. Microscopy was performed in the Laboratory of Confocal and Fluorescence Microscopy co-financed by the European Regional Development Fund and the state budget of the Czech Republic, projects no. CZ.1.05/4.1.00/16.0347 and CZ.2.16/3.1.00/21515, and supported by the Czech-BioImaging large RI project LM2015062.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride | TCI Chemicals | D1601 | https://www.tcichemicals.com/eshop/en/eu/commodity/D1601/;jsessionid=3AD046E5389206AAE33C8AAB5036CDD6?gclid=CjwKCAjwiZnnBRBQEiwAcWKfYrO69K6Np3tYeSsAouqGndUvzzsy1hStBPuHG-X3cpTIsAqq9z0cDBoC76MQAvD_BwE |
Bovine serum albumin | Sigma-Aldrich | A4161 | https://www.sigmaaldrich.com/catalog/product/sigma/a4161?lang=en®ion=CZ |
Disodium hydrogen phosphate dihydrate | PENTA s.r.o. | 15130-31000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_281.pdf |
DL-Thioctic acid, 98% | Alfa Aesar | L04711 | https://www.alfa.com/en/catalog/L04711/ |
Hydrochloric acid 35% | PENTA s.r.o. | 19350-11000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_512.pdf |
Hydrogen tetrachloroaurate(III) trihydrate, ACS, 99.99% (metals basis), Au 49.0% min | Alfa Aesar | 36400 | https://www.alfa.com/en/catalog/036400/ |
O-(2-Mercaptoethyl)-O′-methylpolyethylene glycol 2000 | Sigma-Aldrich | 743127 | https://www.sigmaaldrich.com/catalog/product/aldrich/743127?lang=en®ion=CZ |
Potassium chloride | PENTA s.r.o. | 16200-31000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_346.pdf |
Sodium borohydride | Sigma-Aldrich | 452882 | https://www.sigmaaldrich.com/catalog/product/aldrich/452882?lang=en®ion=CZ&gclid=CjwKCAjwiZnnBRBQEiwAcWKfYuoZKvdK_fH24F1gGugG4pamF2FFZLd36YyZmRTdGgkbm5SbyGP0jBoCoo0QAvD_BwE |
Sodium chloride | PENTA s.r.o. | 16610-31000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_376.pdf |
Sodium dihydrogenphosphate dihydrate | PENTA s.r.o. | 12330-31000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_124.pdf |
Sodium hydroxide pellets | PENTA s.r.o. | 15740-31000 | https://www.pentachemicals.eu/soubory/specifikace/specifikace_307.pdf |
XTT (sodium 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) | Thermo Fisher Scientific | X12223 | https://www.thermofisher.com/order/catalog/product/X12223#/X12223 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved