JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了一种用于为小鼠胸部手术植入永久留置光学窗口的方案,该方案可实现高分辨率的肺活体成像。窗口的持久性使其非常适合研究肺部的动态细胞过程,特别是那些缓慢进化的过程,例如播散性肿瘤细胞的转移性进展。

摘要

转移占癌症相关死亡率的约90%,涉及癌细胞从原发性肿瘤到继发部位(如骨骼,大脑和肺)的全身扩散。尽管经过了广泛的研究,但这一过程的机制细节仍然知之甚少。虽然常见的成像方式,包括计算机断层扫描(CT),正电子发射断层扫描(PET)和磁共振成像(MRI),提供不同程度的粗略可视化,但每种方式都缺乏检测单个肿瘤细胞动力学所需的时间和空间分辨率。为了解决这个问题,已经描述了许多技术用于常见转移部位的活体成像。在这些部位中,肺已被证明特别难以进入活体成像,因为它的细腻性和维持生命的关键作用。虽然之前已经描述了几种用于完整肺的单细胞活体内成像的方法,但所有方法都涉及高度侵入性和终末期手术,将最大可能的成像持续时间限制在6-12小时。这里描述的是一种改进的技术,用于永久植入用于肺部高分辨率成像(WHRIL)的微创胸腔光学窗口。结合经过调整的显微血管造影方法,创新的光学窗口有助于在多个成像会话和数周内以单细胞分辨率对完整肺进行连续活体成像。鉴于可以收集成像数据的前所未有的时间,WHRIL可以促进加速发现转移进展的动态机制和肺部许多其他生物过程。

引言

造成~90%的死亡,转移是癌症相关死亡的主要原因1。在临床观察到的转移的主要部位(骨,肝,肺,脑)2中,肺已被证明对通过活体显微镜进行体内成像特别具有挑战性。这是因为肺是永动机中一个微妙的器官。肺部的连续运动,进一步由胸内心脏运动加剧,是准确成像的重要障碍。因此,由于其相对难以获得高分辨率活体内光学成像的模式,肺内的癌症生长通常被认为是一个隐匿的过程3。

在临床环境中,计算机断层扫描(CT),正电子发射断层扫描(PET)和磁共振成像(MRI)等成像技术可以在完整的重要器官(如肺)深处进行可视化4。然而,虽然这些模式提供了对大器官的良好观察(通常甚至在临床症状发作之前揭示病理学),但它们的分辨率不足以检测单个播散的肿瘤细胞,因为它们在转移的早期阶段进展。因此,当上述方式提供任何肺转移迹象时,转移灶已经建立并增殖。由于肿瘤微环境在癌症进展和转移形成5、6中起着举足轻重的作用,因此对研究体内转移性播种的最早步骤有很大的兴趣。这种兴趣进一步被进一步激发了人们的意识,即癌细胞甚至在检测到原发性肿瘤之前传播7,8,并且越来越多的证据表明它们作为单个细胞存活并且处于休眠状态数年到数十年,然后才生长成宏观转移9。

以前,单细胞分辨率下的肺成像必然涉及离体或外植体制剂10,11,12,13,将分析限制在单个时间点。虽然这些制剂确实提供了有用的信息,但它们并没有提供任何关于连接到完整循环系统的器官内肿瘤细胞动力学的见解。

最近在成像方面的技术进步使得在长达12小时14,15,16的时间内以单细胞分辨率对完整肺进行活体内可视化这是在小鼠模型中完成的,使用涉及机械通气,胸腔切除术和真空辅助肺固定的方案。然而,尽管提供了生理完整肺的第一个单细胞分辨率图像,但该技术具有高度侵入性和终末性,从而排除了索引程序之外的进一步成像过程。因此,这种限制阻止了其应用于研究需要超过12小时的转移步骤,例如休眠和生长的重新启动14,15,16。此外,使用这种成像方法观察到的细胞行为模式必须谨慎解释,因为真空诱导的压差可能导致血流转移。

为了克服这些限制,最近开发了一种用于肺部高分辨率成像的微创窗口(WHRIL),便于在数天至数周的延长时间内进行连续成像,而无需机械通气17。该技术需要创建一个具有密封胸腔的"透明胸腔",以保持正常的肺功能。该过程具有良好的耐受性,允许小鼠恢复而不会对基线活动和功能进行有意义的改变。为了在每次相应的成像过程中可靠地定位完全相同的肺区域,将一种称为显微刻图的技术应用于该窗口18。通过这个窗口,可以捕获细胞到达肺血管床,穿过内皮,经历细胞分裂并生长成微转移的图像。

在这里,该研究详细介绍了用于植入WHRIL的改进手术方案,该方案简化了手术,同时提高了其可重复性和质量。虽然该协议旨在能够研究转移背后的动态过程,但该技术可以替代地应用于肺生物学和病理学的众多过程的研究。

研究方案

本议定书中描述的所有程序均按照脊椎动物使用的指南和法规进行,包括阿尔伯特爱因斯坦医学院机构动物护理和使用委员会的事先批准。

1. 窗户钝化

  1. 用1%(w / v)酶活性洗涤剂溶液冲洗光学窗框(补充图2)。
  2. 在玻璃罐内,将光学窗框浸没在5%(w / v)氢氧化钠溶液中,在70°C下30分钟。
  3. 取下并用去离子水清洗窗框。
  4. 在新的玻璃罐内,将光学窗框浸没在7%(w / v)柠檬酸溶液中,在55°C下10分钟。
  5. 同样,取下并用去离子水清洗窗框。
  6. 重复步骤1.2;然后,取下并用去离子水清洗窗框。

2. 手术准备

  1. 在罩式或层流柜中进行手术。为避免手术区域受到污染,请分别确保不同的、分开的准备、手术和恢复区域。
  2. 在手术前,在高压灭菌器中对所有手术器械进行消毒。如果计划后续程序,请使用热珠灭菌器对器械进行重新灭菌。对于这种外科手术,使用仅提示技术。
  3. 打开加热的手术珠和磁珠灭菌器的电源。
  4. 在麻醉室中用5%异氟醚麻醉小鼠。
  5. 要去除头发,请慷慨地将脱毛膏涂抹在左上胸部切口部位。不超过20秒后,使用湿纸巾牢牢擦去头发和脱毛膏。根据需要重复上述步骤,以去除手术部位的所有毛发。
  6. 使用2-0丝线,在22 G导管的底部打结,留下2英寸长的尾巴(见图1A)。

3. 肺窗手术

  1. 用抗菌肥皂洗手。
  2. 在每次新手术之前,戴上新的无菌手套。
  3. 为了防止角膜干燥和对小鼠眼睛的损害,请在双眼上涂抹眼药膏。
  4. 将10μL(0.1mg / kg)丁丙诺啡稀释在90μL无菌PBS中,然后皮下注射以确保术前镇痛。
  5. 用丝线缝合的22 G导管15插入小鼠。使用充气灯泡,通过注意灯泡挤压时双侧胸部上升来确认插管成功。
  6. 通过将2-0的丝线缝合线绑在小鼠的鼻子周围来固定插管导管(见图1B)。
  7. 将鼠标放在加热的手术支架上,并将其放置在右侧外侧卧位以暴露左胸部。
  8. 将呼吸机连接到插管导管。
  9. 确保呼吸机上受控、稳定的通风,然后将异氟烷降低到3%。在手术开始时,在整个手术过程中定期进行,通过进行脚趾捏合测试来评估麻醉的充分性。
  10. 使用纸胶带,颅骨和尾部分别将前肢和后肢固定到加热的手术阶段。沿着小鼠背部的长度放置另一块胶带,以最大限度地暴露于手术区域(见图1C)。
  11. 打开罩子下的所有手术器械,以保持无菌。
  12. 通过在小鼠皮肤上大量施用防腐剂对手术部位进行消毒。
  13. 使用镊子,抬起皮肤并做一个~10毫米的圆形切口,胸骨左侧约7毫米,比肋下缘高出约7毫米(图1D)。
  14. 仔细识别任何主要船只。如果需要分割血管,用电烙笔在两端烧灼以保持止血。
  15. 切除肋骨上方的软组织。
  16. 使用镊子抬高6第7肋。使用钝性微解剖剪刀的单刃,将圆润的一面朝向肺部,小心地刺穿6和第7肋骨之间的肋间肌以进入胸内空间(图1E)。
  17. 在缺损处小心地排出压缩空气罐,使肺塌陷并将其与胸壁分开。在短时间内发射压缩空气,以防止医源性肺损伤。
  18. 将活检孔放在切割工具上(补充图1),并通过肋间切口小心地操纵切割工具的底座(图1F)。
  19. 调整切削刀具底座的方向,使其与胸壁平行。在肋骨保持架上打一个5毫米的圆孔(图1G)。
    注意:确保暴露的肺组织是粉红色的,没有损伤的迹象。
  20. 使用5-0丝绸缝合线,从孔处创建一个钱包线约1毫米,圆周,与肋骨交错(图1H)。
  21. 定位窗框,使圆形缺陷的边缘在窗口的凹槽内对齐(见图1I)。
  22. 通过紧紧绑住5-0丝绸缝合线来牢固地锁定植入的窗户。
  23. 将100μL氰基丙烯酸酯凝胶粘合剂加载到1mL注射器中。
  24. 通过施加稳定温和的压缩空气流约10-20秒来干燥肺部(图1J)。
  25. 使用镊子抓住窗框的外缘,轻轻抬起以确保肺部与窗框的下表面分离。
  26. 沿着光学窗框的底面分配一层薄薄的氰基丙烯酸酯粘合剂(图1K)。
  27. 增加呼吸机上的呼气末正压 (PEEP) 以给肺部充气。
  28. 保持10-20秒,施加轻柔但牢固的压力,将光学窗框连接到肺组织上(图1L)。
  29. 将剩余的氰基丙烯酸酯凝胶粘合剂的5毫米滴剂滴到矩形盖玻片上。
  30. 使用真空拾音器拾取 5 mm 盖玻片。将盖玻片的底面浸入粘合剂中,然后在矩形盖玻片的侧面刮掉多余的粘合剂三次,使得只剩下非常薄的一层(图1M)。
  31. 小心地将盖玻片放置在光学窗框中心的凹槽内,并以一定角度保持在肺组织上方。短暂夹住呼吸机以产生正压,使肺部过度充气。使用旋转运动,将盖玻片与肺组织平行的方向,以在肺表面和盖玻片的下表面之间产生直接的叠加。保持轻柔的压力,使氰基丙烯酸酯粘合剂凝固(~25 s)。
  32. 使用镊子将盖玻片与真空拾音器分离(图1N)。
  33. 使用5-0丝线缝合线,再次创建钱包线,这次从皮肤切口的切缘圆周<1毫米。将多余的皮肤塞入窗框外缘下方,然后用锁结将其紧紧地绑住。
  34. 为确保盖玻片和窗框之间的气密密封,请在金属玻璃界面处分配少量的液体氰基丙烯酸酯(见图1O)。
  35. 将无菌针头连接到1 mL胰岛素注射器上。将针插入xiphoid突下方,向左肩推进,通过横膈膜进入胸腔。轻轻地拉回注射器,以从胸腔中除去任何残留的空气(见图1P)。
  36. 从鼠标上取下磁带。
  37. 关闭异氟醚。
  38. 继续用100%氧气通气,直到鼠标准备好醒来。
  39. 小心地将2-0丝线缝合线切在小鼠的鼻子周围,并拔管鼠标。
  40. 将鼠标转移到干净的笼子中并进行监控,直到完全恢复。如果存在呼吸困难的迹象,对小鼠实施安乐死。
  41. 通过皮下注射10μL(0.1mg / kg)丁丙诺啡稀释在90μL无菌磷酸盐缓冲溶液(PBS)中来提供术后镇痛。

结果

1总结了本方案中描述的外科手术步骤并进行了说明。简而言之,在手术前,麻醉小鼠并去除左胸部的毛发。对小鼠进行插管和机械通气,以便在胸腔破裂后存活。切除覆盖肋骨的软组织,并产生一个小的圆形缺陷,横跨第6和第7肋骨。将光学窗框插入缺陷中,其底部(透明孔外)粘附在肺组织上。然后用缝合线和粘合剂的组合固定窗框,重新密封胸腔,并...

讨论

在肺等远处转移部位,高分辨率光学成像可以深入了解肿瘤细胞转移的复杂动力学。通过实现单个癌细胞及其与宿主组织的相互作用的 体内 可视化,高分辨率的活体成像已被证明有助于理解转移的潜在机制。

这里描述的是一种改进的手术方案,用于永久胸腔植入光学窗口,旨在通过高分辨率多光子显微镜对小鼠肺进行连续成像。使用该协议创建的窗口具有良好的耐受...

披露声明

作者没有披露任何利益冲突。

致谢

这项工作得到了以下资助的支持:CA216248,CA013330,Montefiore的Ruth L. Kirschstein T32培训补助金CA200561,METAvivor早期职业奖,Gruss-Lipper生物光子学中心及其综合成像计划,以及Jane A.和Myles P. Dempsey。我们要感谢爱因斯坦医学院的分析成像设施(AIF)的成像支持。

材料

NameCompanyCatalog NumberComments
1% (w/v) solution of enzyme-active detergentAlconox IncN/A concentrated, anionic detergent with protease enzyme for manual and ultrasonic cleaning
2 µm fluorescent microspheresInvitrogenF8827
5 mm coverslipElectron Microscopy Sciences72296-05
5% (w/v) solution of sodium hydroxideSigma-AldrichS8045
5% IsofluraneHenry Schein, Inc29405
5-0 braided silk with RB-1 cutting needleEthicon, Inc.774B
7% (w/v) solution of citric acidSigma-Aldrich251275
8 mm stainless steel window frameN/AN/ACustom made, Supplementary Figure 2
9 cm 2-0 silk tieEthicon, Inc.LA55G
5 mm disposable biopsy punchIntegra 33-35-SH
Blunt micro-dissecting scissorsRobozRS-5980
Brass window tool holderN/AN/ACustom-made, Supplemental Figure 3
BuprenorphineHospira0409-2012-32
Cautery penBraintree ScientificGEM 5917
Chlorhexidine gluconate Becton, Dickinson and Company260100ChloraPrep Single swabstick 1.75 mL
Compressed air canisterFalconDPSJB-12
Cyanoacrylate adhesiveHenkel AdhesivesLOC1363589
Fiber-optic illuminatorO.C. White CompanyFL3000
Bead sterilizerCellPoint ScientificGER 5287-120VGerminator 500
Graefe forcepsRobozRS-5135
Infrared heat lampBraintree ScientificHL-1
Insulin syringesBecton Dickinson329424
Isoflurane vaporizerSurgiVetVCT302
Jacobson needle holder with lockKalson SurgicalT1-140
Long cotton tip applicatorsMedline IndustriesMDS202055
NairChurch & Dwight Co., Inc.40002957
Neomycin/polymyxin B/bacitracinJohnson & Johnson501373005Antibiotic ointmen
Ophthalmic ointmentDechra Veterinary Products17033-211-38
Paper tapeFisher ScientificS68702
Murine ventilatorKent ScientificPS-02PhysioSuite
Rectangular Cover GlassCorning2980-225
Rodent intubation standBraintree ScientificRIS 100
Small animal lung inflation bulbHarvard Apparatus72-9083
Stainless steel cutting toolN/AN/ACustom made, Supplementary Figure 1
Sulfamethoxazole and Trimethoprim oral antibioticHi-Tech Pharmacal Co.50383-823-16
SurgiSuite Multi-Functional Surgical Platform for Mice, with WarmingKent ScientificSURGI-M02Heated surgical platform
Tracheal catheterExelint International2674622 G catheter
Vacuum pickup system metal probeTed Pella, Inc.528-112

参考文献

  1. Mehlen, P., Puisieux, A. Metastasis: a question of life or death. Nature Reviews Cancer. 6 (6), 449-458 (2006).
  2. Lee, Y. T. Breast carcinoma: pattern of metastasis at autopsy. Journal of Surgical Oncology. 23 (3), 175-180 (1983).
  3. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer. 2 (8), 563-572 (2002).
  4. Coste, A., Oktay, M. H., Condeelis, J. S., Entenberg, D. Intravital imaging techniques for biomedical and clinical research. Cytometry Part A. 95 (5), 448-457 (2019).
  5. DeClerck, Y. A., Pienta, K. J., Woodhouse, E. C., Singer, D. S., Mohla, S. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: A white paper from the NCI TME network. Cancer Research. 77 (5), 1051-1059 (2017).
  6. Borriello, L., et al. The role of the tumor microenvironment in tumor cell intravasation and dissemination. European Journal of Cell Biology. 99 (6), 151098 (2020).
  7. Hosseini, H., et al. Early dissemination seeds metastasis in breast cancer. Nature. 540 (7634), 552-558 (2016).
  8. Harper, K. L., et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 540, 589-612 (2016).
  9. Risson, E., Nobre, A. R., Maguer-Satta, V., Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer. 1 (7), 672-680 (2020).
  10. Qian, B., et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 4 (8), 6562 (2009).
  11. Qian, B. Z., et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475 (7355), 222-225 (2011).
  12. Miyao, N., et al. Various adhesion molecules impair microvascular leukocyte kinetics in ventilator-induced lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology. 290 (6), 1059-1068 (2006).
  13. Bernal, P. J., et al. Nitric-oxide-mediated zinc release contributes to hypoxic regulation of pulmonary vascular tone. Circulation Research. 102 (12), 1575-1583 (2008).
  14. Entenberg, D., et al. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. IntraVital. 4 (3), 1-11 (2015).
  15. Rodriguez-Tirado, C., et al. Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. Journal of Visualized Experiments: JoVE. (116), e54603 (2016).
  16. Looney, M. R., et al. Stabilized imaging of immune surveillance in the mouse lung. Nature Methods. 8 (1), 91-96 (2011).
  17. Entenberg, D., et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nature Methods. 15 (1), 73-80 (2018).
  18. Dunphy, M. P., Entenberg, D., Toledo-Crow, R., Larson, S. M. In vivo microcartography and subcellular imaging of tumor angiogenesis: a novel platform for translational angiogenesis research. Microvascular Research. 78 (1), 51-56 (2009).
  19. Harney, A. S., Wang, Y., Condeelis, J. S., Entenberg, D. Extended time-lapse intravital imaging of real-time multicellular dynamics in the tumor microenvironment. Journal of Visualized Experiments: JoVE. (112), e54042 (2016).
  20. Seynhaeve, A. L. B., Ten Hagen, T. L. M. Intravital microscopy of tumor-associated vasculature using advanced dorsal skinfold window chambers on transgenic fluorescent mice. Journal of Visualized Experiments: JoVE. (131), e55115 (2018).
  21. Entenbery, D., et al. Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods. 128, 65-77 (2017).
  22. Ueki, H., Wang, I. H., Zhao, D., Gunzer, M., Kawaoka, Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nature Protocols. 15 (3), 1041-1065 (2020).
  23. Ritsma, L., Ponsioen, B., van Rheenen, J. Intravital imaging of cell signaling in mice. IntraVital. 1 (1), 2-10 (2012).
  24. Kedrin, D., et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods. 5 (12), 1019-1021 (2008).
  25. Harney, A. S., et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discovery. 5 (9), 932-943 (2015).
  26. Karagiannis, G. S., et al. Assessing tumor microenvironment of metastasis doorway-mediated vascular permeability associated with cancer cell dissemination using intravital imaging and fixed tissue analysis. Journal of Visualized Experiments: JoVE. (148), e59633 (2019).
  27. Karagiannis, G. S., et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Science Translational Medicine. 9 (397), (2017).
  28. Dreher, M. R., et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute. 98 (5), 335-344 (2006).
  29. Rizzo, V., Kim, D., Duran, W. N., DeFouw, D. O. Ontogeny of microvascular permeability to macromolecules in the chick chorioallantoic membrane during normal angiogenesis. Microvascular Research. 49 (1), 49-63 (1995).
  30. Hoshino, A., et al. Tumour exosome integrins determine organotropic metastasis. Nature. 527 (7578), 329-335 (2015).
  31. Ueki, H., et al. In vivo imaging of the pathophysiological changes and neutrophil dynamics in influenza virus-infected mouse lungs. Proceedings of the National Academy of Sciences of the United States of America. 115 (28), 6622-6629 (2018).
  32. Kornfield, T. E., Newman, E. A. Measurement of retinal blood flow using fluorescently labeled red blood cells. eNeuro. 2 (2), (2015).
  33. Dasari, S., Weber, P., Makhloufi, C., Lopez, E., Forestier, C. L. Intravital microscopy imaging of the liver following leishmania infection: An assessment of hepatic hemodynamics. Journal of Visualized Experiments: JoVE. (101), e52303 (2015).
  34. Chaigneau, E., Roche, M., Charpak, S. Unbiased analysis method for measurement of red blood cell size and velocity with laser scanning microscopy. Frontiers in Neuroscience. 13, 644 (2019).
  35. Kim, T. N., et al. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One. 7 (6), 38590 (2012).
  36. Presson, R. G., et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. American Journal of Pathology. 179 (1), 75-82 (2011).
  37. Tabuchi, A., Mertens, M., Kuppe, H., Pries, A. R., Kuebler, W. M. Intravital microscopy of the murine pulmonary microcirculation. Journal of Applied Physiology. 104 (2), 338-346 (2008).
  38. Travis, W. D. Classification of lung cancer. Seminars in Roentgenology. 46 (3), 178-186 (2011).
  39. Scholten, E. T., Kreel, L. Distribution of lung metastases in the axial plane. A combined radiological-pathological study. Radiologica Clinica (Basel). 46 (4), 248-265 (1977).
  40. Braman, S. S., Whitcomb, M. E. Endobronchial metastasis. Archives of Internal Medicine. 135 (4), 543-547 (1975).
  41. Herold, C. J., Bankier, A. A., Fleischmann, D. Lung metastases. European Radiology. 6 (5), 596-606 (1996).
  42. Kimura, H., et al. Real-time imaging of single cancer-cell dynamics of lung metastasis. Journal of Cellular Biochemistry. 109 (1), 58-64 (2010).
  43. Thevenaz, P., Ruttimann, U. E., Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society. 7 (1), 27-41 (1998).
  44. Sharma, V. P. ImageJ plugin HyperStackReg V5.6. Zenodo. , (2018).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

173

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。