Evaluating the Heat Transfer of a Spin-and-Chill

Overview

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

The Spin-and-Chill uses heat transfer and fluid flow fundamentals to chill beverages from room temperature to 38 °F in as little as 2 min. It would take a refrigerator approximately 240 min and an ice chest approximately 40 min to achieve an equivalent temperature change. This is accomplished Spin and Chill by spinning a can or bottle at up to 500 rpm, which creates little or no foaming.

In this experiment, the efficacy of spinning a cylinder (i.e., soda can) at high speeds to cool a soft drink will be evaluated. Operational parameters, such as rpm and spin time, will be varied to assess their effect on heat transfer, and the heat transfer coefficient will be calculated using a lumped parameter model.

Procedure

1. Testing the Spin-and-Chill

  1. Fill the aluminum soda can with room temperature water and then record the temperature.
  2. Measure the total weight of the ice being used with the balance, enough to surround the Spin-and-Chill.
  3. Seal the aluminum soda can using a plastic sealing lid and insert the assembly into the Spin-and-Chill.
  4. Activate the Spin-and-Chill. It should run about 2 min at ~ 300 rpm.
  5. Remove the aluminum soda can from the Spin-and-Chill and remo

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

The lumped parameter model is used to determine the heat transfer coefficient, h, for the different experimental conditions. To calculate the efficiency, we first determine the energy transferred as heat into the ice bath from the liquid in the can. If the system were adiabatic (100% efficient), Qwater + Qice = 0. The efficiency is determined by dividing the absolute value of heat released by the water in the can (Qwater) by the heat absorbed by the ice du

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

This experiment is designed to assess the ability of the Spin-and-Chill to cool a soft drink at record speeds. The lumped parameter model was used since convection was much more important than conduction (due to the high rate of mixing).

The data collected calls into question the ability of the Spin-and-Chill to cool at warm can of soda to 38 °F in 2 minutes. However, with three sequential uses and a time period of about 6 minutes, the Spin-and-Chill can cool the soft drink to the desired

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Vapor-compression Refrigeration." ChemEngineering - Vapor-compression Refrigeration. N.p., n.d. Web. 01 Dec. 2016.
  2. Bartgis, Catherine, Alexander M. Lebrun, Rhongui Ma, and Liang Zhu. "Determination of Time of Death in Forensic Science via a 3-D Whole Body Heat Transfer Model." Journal of Thermal Biology (2016). Web.
  3. Wemhoff, A.p., and M.v. Frank. "Predictions of Energy Savings in HVAC Systems by Lumped Models." Energy and Buildings 42.10 (2010): 1807-814. Web.
  4. Encyclopedia of Chemical Engineering Equipment." Heat Exchangers - Heat Transfer - MEL Equipment Encyclopedia 4.0. N.p., n.d. Web. 01 Dec. 2016.
Tags
Spin and chillHeat TransferTechnologyEngineering ProcessesConvective Heat TransferCooling EfficiencyModelUnderstandHeat Transfer SituationsExperimentsApplicationsSoda CanReservoir Of IceRotatingRevolutions Per MinuteCooling RateTemperature DistributionFluidWallThin Membrane

跳至...

0:07

Overview

1:12

Principles of Spin-and-Chill Operation

4:13

Convective Heat Transfer: Lumped Parameter Model

5:42

Results

7:04

Applications

8:21

Summary

此集合中的视频:

article

Now Playing

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.3K Views

article

测试芬管热交换器的传热效率

Chemical Engineering

17.8K Views

article

利用托盘干燥器研究对流和导电传热

Chemical Engineering

43.7K Views

article

丙二醇溶液的粘度

Chemical Engineering

32.1K Views

article

硅铝粉的法

Chemical Engineering

9.6K Views

article

用挤出法论证幂律模型

Chemical Engineering

9.9K Views

article

气体吸收器

Chemical Engineering

36.4K Views

article

汽液平衡

Chemical Engineering

87.5K Views

article

回流比对塔板蒸馏效率的影响

Chemical Engineering

77.1K Views

article

液-液萃取效率

Chemical Engineering

48.1K Views

article

液相反应器: 蔗糖反转

Chemical Engineering

9.6K Views

article

水杨酸的化学改性结晶

Chemical Engineering

24.0K Views

article

填料床反应器中的单相和两相流

Chemical Engineering

18.8K Views

article

烷的加入聚合动力学

Chemical Engineering

16.0K Views

article

催化反应器: 乙烯加氢

Chemical Engineering

29.9K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。