The interstitial cells of Cajal (ICC) are the pacemaker cells of the gastrointestinal (GI) tract. They form complex networks between smooth muscle cells and post-ganglionic neuronal fibers to regulate GI contractility. Here, we present immunofluorescence methods cross-sectional and whole-mount visualization of murine ICC networks.
This protocol is successfully used to quantitatively detect levels and spatial patterns of mRNA expression in multiple tissue types across vertebrate species. The method can detect low abundance transcripts and allows processing of hundreds of slides simultaneously. We present this protocol using expression profiling of avian embryonic brain formation as an example.
We genetically-encode the unnatural amino acid, p-azido-L-phenylalanine at various targeted positions in GPCRs and show the versatility of the azido group in different applications. These include a targeted photocrosslinking technology to identify residues in the ligand-binding pocket of a GPCR, and site-specific bioorthogonal modification of GPCRs with a peptide-epitope tag or fluorescent probe.
The Tomato/GFP-FLP/FRT method involves visualizing mosaic photoreceptor cells in living Drosophila. It can be used to follow individual photoreceptor cell fates in the retina for days or weeks. This method is ideal for studies of retinal degeneration and neurodegenerative diseases or photoreceptor cell development.
Transsynaptic tracing has become a powerful tool for analyzing central efferents regulating peripheral targets through multi-synaptic circuits. Here we present a protocol that exploits the transsynaptic pseudorabies virus to identify and localize a functional brain circuit, followed by classical tract tracing techniques to validate specific connections in the circuit between identified groups of neurons.
The increasing use of zebrafish as an animal model requires the development of effective methods for the delivery of known quantities of compounds and solutions. The gavage procedure described below allows for the oral delivery of precise volumes of solution reliably, safely and efficiently to adult zebrafish.
Neural crest (NC) cells derived from human pluripotent stem cells (hPSC) have great potential for modeling human development and disease and for cell replacement therapies. Here, a feeder-free adaptation of the currently widely used in vitro differentiation protocol for the derivation of NC cells from hPSCs is presented.
Imaging the dynamic behavior of organelles and other subcellular structures in vivo can shed light on their function in physiological and disease conditions. Here, we present methods for genetically tagging two organelles, centrosomes and mitochondria, and imaging their dynamics in living zebrafish embryos using wide-field and confocal microscopy.
Mice produce a complex multisyllabic repertoire of ultrasonic vocalizations (USVs). These USVs are widely used as readouts for neuropsychiatric disorders. This protocol describes some of the practices we learned and developed to consistently induce, collect, and analyze the acoustic features and syntax of mouse songs.
Here we describe protocols to disrupt mammalian cells by solid-state milling at a cryogenic temperature, produce a cell extract from the resulting cell powder, and isolate protein complexes of interest by affinity capture upon antibody-coupled micron-scale paramagnetic beads.
Temperature-sensitive (ts) lethal mutants are valuable tools to identify and analyze essential functions. Here we describe methods to generate and classify ts lethal mutants in high throughput.
The American bullfrog's (Rana catesbeiana) sacculus permits direct examination of hair-cell physiology. Here the dissection and preparation of the bullfrog's sacculus for biophysical studies is described. We show representative experiments from these hair cells, including the calculation of a bundle's force-displacement relation and measurement of its unforced motion.
Many proteins in the cell sense and induce membrane curvature. We describe a method to pull membrane nanotubes from lipid vesicles to study the interaction of proteins or any curvature-active molecule with curved membranes in vitro.
Protocols for quantitative assessment of lymphocyte chemotaxis and migration are important tools for immunology research. Here, an in vitro protocol is described that permits real-time, multiplexed evaluation of cell migration, as well as a complementary in vivo technique enabling tracking of native cells to spleen.
Three-dimensional organotypic cultures of the murine utricle and cochlea in optically clear collagen I gels preserve innate tissue morphology, allow for mechanical stimulation through adjustment of matrix stiffness, and permit virus-mediated gene delivery.
Due to the high lipid content, adipose tissue has been challenging to visualize using traditional histological methods. Adipo-Clear is a tissue clearing technique that allows robust labeling and high-resolution volumetric fluorescent imaging of adipose tissue. Here, we describe the methods for sample preparation, pretreatment, staining, clearing, and mounting for imaging.
In this article a high-throughput protocol for fast and reliable determination of gene expression levels in single or bulk C. elegans samples is described. This protocol does not require RNA isolation and produces cDNA directly from samples. It can be used together with high-throughput multiplexed nanofluidic real-time qPCR platforms.
The goal of this protocol is to deliver animal-derived and artificial blood meals to Aedes aegypti mosquitoes through an artificial membrane feeder and precisely quantify the volume of meal ingested.
This protocol presents essential cell culture techniques and practices to be used in the research cell culture laboratory to avoid contamination by fungi and bacteria. Within the category of bacteria, special emphasis will be placed on preventing mycoplasma contamination.
We present a method for culturing and gene editing primary rhesus macaque B cells using CRISPR/Cas9 and recombinant adeno-associated virus serotype 6 for the study of B cell therapies.
This article presents a detailed experimental procedure for reconstituting nucleosome-containing DNA tethers for single-molecule correlative force and fluorescence microscopy. It further describes several downstream experiments that can be conducted to visualize the binding behavior of chromatin-interacting proteins and analyze changes in the physical properties of nucleosomes.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten