Microscopic organisms like the free-swimming nematode C. elegans, live and behave in a complex three-dimensional environment. We report on a novel approach that provides analysis of C. elegans using diffraction patterns. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through a cuvette.
A protocol for live imaging of GFP-tagged proteins or autofluorescent structures in individual Drosophila oocytes is described.
The technique presented here measures the path of freely swimming microscopic species using single wavelength exposure. C. elegans are used to demonstrate shadow imaging as an inexpensive alternative to costly microscopes. This technique can be adapted to accommodate various orientations, environments and species to measure direction, speed, acceleration and forces.
A protocol for sectioning sediment cores and extracting pore waters under anoxic conditions in order to permit analysis of redox sensitive species in both solids and fluids is presented.
This manuscript describes how to distinguish different nematodes using far-field diffraction signatures. We compare the locomotion of 139 wild type and 108 "Roller" C. elegans by averaging frequencies associated with the temporal Fraunhofer diffraction signature at a single location using a continuous wave laser.
As the use of forced oscillation technique (FOT) is increasingly utilized to characterize respiratory mechanics, there is a need to standardize methods with respect to nascent technical guidelines and various manufacturer's recommendations. A detailed protocol is provided including FOT assessment and interpretation for two cases to facilitate the standardization of methods.
Young adult Caenorhabditis elegans nematodes are exposed to different concentrations of commercial pesticides or other toxicants for 2-24 h. Then, different neurons can be visualized using fluorescent-expressing strains. This paper demonstrates how to expose nematodes to pesticides and assess neuron damage.
Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten