We demonstrate intraperitoneal injection into adult zebrafish. We use a 10 μl NanoFil microsyringe controlled by a Micro4 controller and UltraMicroPump III. This demonstration includes the use of cold water as an anesthetic.
Described is a two-step labeling process using β-glucosyltransferase (β-GT) to transfer an azide-glucose to 5-hmC, followed by click chemistry to transfer a biotin linker for easy and density-independent enrichment. This efficient and specific labeling method enables enrichment of 5-hmC with extremely low background and high-throughput epigenomic mapping via next-generation sequencing.
Drop impact of non-Newtonian fluids is a complex process since different physical parameters influence the dynamics over a very short time (less than one tenth of a millisecond). A fast imaging technique is introduced in order to characterize the impact behaviors of different non-Newtonian fluids.
A method is described with visual accompaniment for conducting scalable, high throughput selections from phage-displayed combinatorial synthetic antibody libraries against hundreds of antigens simultaneously. Using this parallel approach, we have isolated antibody fragments that exhibit high affinity and specificity for diverse antigens that are functional in standard immunoassays.
We outline a protocol that implements both in vivo and ex vivo approaches to study ovarian cancer colonization of peritoneal adipose tissues, particularly the omentum. Furthermore, we present a protocol to quantitate and analyze immune cell-structures in the omentum known as milky spots, which promote metastases of peritoneal adipose.
We describe here a simple and rapid paper-based DNA extraction method of HIV proviral DNA from whole blood detected by quantitative PCR. This protocol can be extended for use in detecting other genetic markers or using alternative amplification methods.
The ability of metastatic clones to colonize distant sites depends on their proliferation capacity and/or their ability to survive in the host microenvironment without significant proliferation. Here, we present an animal model that allows quantitative visualization of both types of liver colonization by metastatic clones.
We demonstrate the semi-automated radiochemical synthesis of [18F]3F4AP and quality control procedures.
Here, we describe a technique to isolate the side population cells from a zebrafish model of myc-induced T-cell acute lymphoblastic leukemia (T-ALL). This side population assay is highly sensitive and is described for zebrafish T-ALL, but it may be applicable to other malignant and non-malignant zebrafish cell types.
We describe a method by which we identify critical residues required for the binding of human or murine monoclonal antibodies that target the viral hemagglutinin of influenza A viruses. The protocol can be adapted to other virus surface glycoproteins and their corresponding neutralizing antibodies.
The goal of this protocol is to show how to use Lattice Light-Sheet Microscopy to four-dimensionally visualize surface receptor dynamics in live cells. Here T cell receptors on CD4+ primary T cells are shown.
We provide protocols and representative data for designing, assembling, and characterizing polyelectrolyte complex micelles, core-shell nanoparticles formed by polyelectrolytes and hydrophilic charged-uncharged block copolymers.
This protocol describes the use of silicon nanowires for intracellular optical bio-modulation of cell in a simple and easy to perform method. The technique is highly adaptable to diverse cell types and can be used for in vitro as well as in vivo applications.
This paper describes a method to create wounds in the epithelium of a live Clytia hemisphaerica medusa and image wound healing at a high resolution in vivo. Additionally, a technique to introduce dyes and drugs to perturb signaling processes in the epithelial cells and extracellular matrix during wound healing is presented.
Here we describe methods for microfabricating vertically aligned carbon nanofibers (VACNFs), transferring VACNFs to flexible substrates, and applying VACNFs on both rigid and flexible substrates to plants for biomolecule and dye delivery.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten