Anmelden

In 1928, a German botanist Emil Heitz observed the moss nuclei with a DNA binding dye. He observed that while some chromatin regions decondense and spread out in the interphase nucleus, others do not. He termed them euchromatin and heterochromatin, respectively. He proposed that the heterochromatin regions reflect a functionally inactive state of the genome. It was later confirmed that heterochromatin is transcriptionally repressed, and euchromatin is transcriptionally active chromatin.

Difference between euchromatin and heterochromatin

Euchromatin is a lightly stained, gene-rich, and loosely-bound chromatin region. It is usually dispersed in the nucleus. The histones of euchromatin are extensively acetylated, which allows loose chromatin compaction.

In contrast, heterochromatin is a darkly stained, repeat-rich, gene-poor, and compact chromatin. It is mostly seen at the nuclear periphery, often as clumps. The histones of heterochromatin are methylated, which enables a compact chromatin structure.

Position-effect variegation

Chromosomal rearrangements may position euchromatin genes next to heterochromatin. Such gene rearrangements can result in gene silencing by virtue of being placed near heterochromatin, rather than a change in the gene itself. This phenomenon is called "position-effect variegation (PEV)." Hence, the juxtaposed gene becomes silent in some cells where it is normally active, resulting in a variegated phenotype. The phenomenon of PEV is well studied in Drosophila.

The formation of heterochromatin depends on the histone H3 methylation followed by the association with nonhistone proteins such as Heterochromatin Protein 1 or HP1. Usually, heterochromatin and euchromatin are separated by a buffer region with many repeat-rich regions. PEV indicates that heterochromatin, once formed, can spread beyond the buffer region into the adjoining chromatin. In humans, HUSH complex methylates histones and contributes to the spreading of heterochromatin and hence, position effect variegation.

Tags
Position effect VariegationEukaryotic CellDNAProteinsChromatinHeterochromatinEuchromatinBarrier DNA SequencesGene Expression PatternsDNA Rearrangement EventsTranspositionSilenced GenesInactivated GenesDrosophilaWhite GeneRed Eye Color

Aus Kapitel 5:

article

Now Playing

5.11 : Positionseffekt-Variegation

DNA und Struktur von Chromosomen

6.2K Ansichten

article

5.1 : DNA-Verpackung

DNA und Struktur von Chromosomen

29.8K Ansichten

article

5.2 : DNA als genetische Vorlage

DNA und Struktur von Chromosomen

21.1K Ansichten

article

5.3 : Organisation von Genen

DNA und Struktur von Chromosomen

11.8K Ansichten

article

5.4 : Struktur von Chromosomen

DNA und Struktur von Chromosomen

22.1K Ansichten

article

5.5 : Chromosomen-Replikation

DNA und Struktur von Chromosomen

8.5K Ansichten

article

5.6 : Das Nukleosom

DNA und Struktur von Chromosomen

15.6K Ansichten

article

5.7 : Der Nukleosomenkern

DNA und Struktur von Chromosomen

11.6K Ansichten

article

5.8 : Nukleosom-Umbau

DNA und Struktur von Chromosomen

8.7K Ansichten

article

5.9 : Chromatin-Verpackung

DNA und Struktur von Chromosomen

14.8K Ansichten

article

5.10 : Karyotypisierung

DNA und Struktur von Chromosomen

10.0K Ansichten

article

5.12 : Histon-Modifikation

DNA und Struktur von Chromosomen

12.6K Ansichten

article

5.13 : Ausbreitung von Chromatinmodifikationen

DNA und Struktur von Chromosomen

8.0K Ansichten

article

5.14 : Lampenbürstenchromosom

DNA und Struktur von Chromosomen

7.8K Ansichten

article

5.15 : Polytänchromosom

DNA und Struktur von Chromosomen

9.8K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten