Entrar

Em 1928, um botânico Alemão Emil Heitz observou os núcleos de musgos com um corante de DNA. Ele observou que, enquanto que algumas regiões de cromatina decondensam e espalham-se pelo núcleo interfásico, outras não. Ele denominou-as eucromatina e heterocromatina, respectivamente. Ele propôs que as regiões de heterocromatina refletem um estado funcionalmente inativo do genoma. Posteriormente, confirmou-se que a heterocromatina é transcricionalmente reprimida, e a eucromatina é a cromatina transcricionalmente ativa.

Diferença entre eucromatina e heterocromatina

A eucromatina é uma região de cromatina ligeiramente corada, rica em genes, e ligada de forma mais solta. Normalmente está dispersa pelo núcleo. As histonas da eucromatina estão extensivamente acetiladas, o que permite a compactação de cromatina mais solta.

Em contraste, a heterocromatina é um cromatina com coloração escura, rica em repetições, pobre em genes, e compacta. É vista principalmente na periferia nuclear, muitas vezes como aglomerados. As histonas da heterocromatina estão metiladas, o que permite uma estrutura compacta de cromatina.

Efeito de posição variegado

Os rearranjos cromossómicos podem posicionar genes da eucromatina próximos da heterocromatina. Tais rearranjos de genes podem resultar em silenciamento de genes em virtude de serem colocados perto de heterocromatina, em vez de uma alteração no próprio gene. Este fenómeno chama-se "efeito de posição variegado (PEV)." Assim, o gene justaposto torna-se silenciado em algumas células onde está normalmente ativo, resultando em um fenótipo variegado. O fenómeno do PEV é bem estudado em Drosophila.

A formação de heterocromatina depende da metilação da histona H3, seguida da associação com proteínas não histonas, como a Proteína Heterocromatina 1 ou HP1. Normalmente, heterocromatina e eucromatina estão separadas por uma zona tampão com muitas regiões ricas em repetições. O PEV indica que a heterocromatina, uma vez formada, pode espalhar-se para além da zona tampão para a cromatina adjacente. Em humanos, o complexo HUSH metila histonas e contribui para a propagação de heterocromatina e, portanto, o efeito de posição variegado.

Tags
Position effect VariegationEukaryotic CellDNAProteinsChromatinHeterochromatinEuchromatinBarrier DNA SequencesGene Expression PatternsDNA Rearrangement EventsTranspositionSilenced GenesInactivated GenesDrosophilaWhite GeneRed Eye Color

Do Capítulo 5:

article

Now Playing

5.11 : Variegação de Efeito de Posição

DNA e Estrutura Cromossômica

6.2K Visualizações

article

5.1 : Empacotamento do DNA

DNA e Estrutura Cromossômica

29.8K Visualizações

article

5.2 : DNA como um Modelo Genético

DNA e Estrutura Cromossômica

21.2K Visualizações

article

5.3 : Organização dos Genes

DNA e Estrutura Cromossômica

11.8K Visualizações

article

5.4 : Estrutura Cromossômica

DNA e Estrutura Cromossômica

22.1K Visualizações

article

5.5 : Replicação Cromossômica

DNA e Estrutura Cromossômica

8.5K Visualizações

article

5.6 : O Nucleossomo

DNA e Estrutura Cromossômica

15.6K Visualizações

article

5.7 : A Partícula do Núcleo do Nucleossomo

DNA e Estrutura Cromossômica

11.6K Visualizações

article

5.8 : Remodelação do Nucleossomo

DNA e Estrutura Cromossômica

8.7K Visualizações

article

5.9 : Empacotamento da Cromatina

DNA e Estrutura Cromossômica

14.8K Visualizações

article

5.10 : Cariotipagem

DNA e Estrutura Cromossômica

10.0K Visualizações

article

5.12 : Modificação de Histona

DNA e Estrutura Cromossômica

12.6K Visualizações

article

5.13 : Disseminação de Modificações da Cromatina

DNA e Estrutura Cromossômica

8.0K Visualizações

article

5.14 : Cromossomos Plumosos (Lampbrush)

DNA e Estrutura Cromossômica

7.8K Visualizações

article

5.15 : Cromossomos Politênicos

DNA e Estrutura Cromossômica

9.8K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados