In electrostatics, the electric field can be written as the negative gradient of the potential. In magnetostatics, the zero divergence of the magnetic field ensures that the magnetic field can be expressed as the curl of a vector potential. This potential is known as the magnetic vector potential.

Consider an ideal solenoid with n turns per unit length and radius R. If I is the current through the solenoid, the magnetic field inside the solenoid is expressed as the product of vacuum permeability, the number of turns per unit length, and the current. Conversely, the magnetic field outside the solenoid is zero. Considering this, what is the vector potential for an ideal solenoid?

The magnetic flux through the solenoid is given by

Equation1

Since the magnetic field equals the curl of the vector potential, the magnetic flux can be rewritten in terms of the vector potential.

Equation2

Thus, the line integral of the magnetic vector potential equals the surface integral of the magnetic field.

Equation3

Now consider a circular Amperian loop of radius r inside the solenoid. The magnetic flux through this loop is given by

Equation4

Equating the magnetic flux to the line integral of the magnetic vector potential, the expression for the vector potential can be obtained.

Equation5

The vector potential mimics the magnetic field and acts along the circumference.

Tags
Magnetic Vector PotentialElectrostaticsMagnetostaticsMagnetic FieldSolenoidVacuum PermeabilityMagnetic FluxLine IntegralSurface IntegralAmperian LoopVector Potential Expression

Aus Kapitel 29:

article

Now Playing

29.14 : Magnetic Vector Potential

Sources of Magnetic Fields

411 Ansichten

article

29.1 : Magnetfeld durch bewegte Ladungen

Sources of Magnetic Fields

7.6K Ansichten

article

29.2 : Biot-Savart-Gesetz

Sources of Magnetic Fields

5.2K Ansichten

article

29.3 : Biot-Savart-Gesetz: Problemlösung

Sources of Magnetic Fields

2.0K Ansichten

article

29.4 : Magnetfeld aufgrund eines dünnen geraden Drahtes

Sources of Magnetic Fields

4.3K Ansichten

article

29.5 : Magnetfeld durch zwei gerade Drähte

Sources of Magnetic Fields

2.0K Ansichten

article

29.6 : Magnetische Kraft zwischen zwei parallelen Strömen

Sources of Magnetic Fields

3.0K Ansichten

article

29.7 : Magnetfeld einer Stromschleife

Sources of Magnetic Fields

3.9K Ansichten

article

29.8 : Divergenz und Krümmung des Magnetfeldes

Sources of Magnetic Fields

2.5K Ansichten

article

29.9 : Das Amperesche Gesetz

Sources of Magnetic Fields

3.3K Ansichten

article

29.10 : Amperes Gesetz: Problemlösung

Sources of Magnetic Fields

3.3K Ansichten

article

29.11 : Magnetspulen

Sources of Magnetic Fields

2.3K Ansichten

article

29.12 : Magnetfeld eines Magneten

Sources of Magnetic Fields

3.3K Ansichten

article

29.13 : Ringkerne

Sources of Magnetic Fields

2.6K Ansichten

article

29.15 : Potential durch ein magnetisiertes Objekt

Sources of Magnetic Fields

206 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten