로그인

In electrostatics, the electric field can be written as the negative gradient of the potential. In magnetostatics, the zero divergence of the magnetic field ensures that the magnetic field can be expressed as the curl of a vector potential. This potential is known as the magnetic vector potential.

Consider an ideal solenoid with n turns per unit length and radius R. If I is the current through the solenoid, the magnetic field inside the solenoid is expressed as the product of vacuum permeability, the number of turns per unit length, and the current. Conversely, the magnetic field outside the solenoid is zero. Considering this, what is the vector potential for an ideal solenoid?

The magnetic flux through the solenoid is given by

Equation1

Since the magnetic field equals the curl of the vector potential, the magnetic flux can be rewritten in terms of the vector potential.

Equation2

Thus, the line integral of the magnetic vector potential equals the surface integral of the magnetic field.

Equation3

Now consider a circular Amperian loop of radius r inside the solenoid. The magnetic flux through this loop is given by

Equation4

Equating the magnetic flux to the line integral of the magnetic vector potential, the expression for the vector potential can be obtained.

Equation5

The vector potential mimics the magnetic field and acts along the circumference.

Tags
Magnetic Vector PotentialElectrostaticsMagnetostaticsMagnetic FieldSolenoidVacuum PermeabilityMagnetic FluxLine IntegralSurface IntegralAmperian LoopVector Potential Expression

장에서 29:

article

Now Playing

29.14 : Magnetic Vector Potential

Sources of Magnetic Fields

445 Views

article

29.1 : 움직이는 전하로 인한 자기장

Sources of Magnetic Fields

8.0K Views

article

29.2 : 비오-사바트 법칙

Sources of Magnetic Fields

5.5K Views

article

29.3 : Biot-Savart Law: 문제 해결

Sources of Magnetic Fields

2.2K Views

article

29.4 : 얇은 직선 와이어로 인한 자기장

Sources of Magnetic Fields

4.5K Views

article

29.5 : 두 개의 직선 와이어로 인한 자기장

Sources of Magnetic Fields

2.2K Views

article

29.6 : 두 개의 병렬 전류 사이의 자기력

Sources of Magnetic Fields

3.3K Views

article

29.7 : 전류 루프의 자기장

Sources of Magnetic Fields

4.1K Views

article

29.8 : 자기장의 발산(Divergence and Curl)

Sources of Magnetic Fields

2.6K Views

article

29.9 : 암페어의 법칙

Sources of Magnetic Fields

3.5K Views

article

29.10 : 암페어의 법칙: 문제 해결

Sources of Magnetic Fields

3.4K Views

article

29.11 : 솔레노이드

Sources of Magnetic Fields

2.4K Views

article

29.12 : 솔레노이드의 자기장

Sources of Magnetic Fields

3.5K Views

article

29.13 : 토로이드

Sources of Magnetic Fields

2.7K Views

article

29.15 : 자화된 물체로 인한 전위

Sources of Magnetic Fields

227 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유