Accedi

In electrostatics, the electric field can be written as the negative gradient of the potential. In magnetostatics, the zero divergence of the magnetic field ensures that the magnetic field can be expressed as the curl of a vector potential. This potential is known as the magnetic vector potential.

Consider an ideal solenoid with n turns per unit length and radius R. If I is the current through the solenoid, the magnetic field inside the solenoid is expressed as the product of vacuum permeability, the number of turns per unit length, and the current. Conversely, the magnetic field outside the solenoid is zero. Considering this, what is the vector potential for an ideal solenoid?

The magnetic flux through the solenoid is given by

Equation1

Since the magnetic field equals the curl of the vector potential, the magnetic flux can be rewritten in terms of the vector potential.

Equation2

Thus, the line integral of the magnetic vector potential equals the surface integral of the magnetic field.

Equation3

Now consider a circular Amperian loop of radius r inside the solenoid. The magnetic flux through this loop is given by

Equation4

Equating the magnetic flux to the line integral of the magnetic vector potential, the expression for the vector potential can be obtained.

Equation5

The vector potential mimics the magnetic field and acts along the circumference.

Tags
Magnetic Vector PotentialElectrostaticsMagnetostaticsMagnetic FieldSolenoidVacuum PermeabilityMagnetic FluxLine IntegralSurface IntegralAmperian LoopVector Potential Expression

Dal capitolo 29:

article

Now Playing

29.14 : Magnetic Vector Potential

Sources of Magnetic Fields

445 Visualizzazioni

article

29.1 : Campo magnetico dovuto a cariche in movimento

Sources of Magnetic Fields

8.0K Visualizzazioni

article

29.2 : Legge di Biot-Savart

Sources of Magnetic Fields

5.5K Visualizzazioni

article

29.3 : Legge di Biot-Savart: risoluzione dei problemi

Sources of Magnetic Fields

2.2K Visualizzazioni

article

29.4 : Campo magnetico dovuto a un sottile filo dritto

Sources of Magnetic Fields

4.5K Visualizzazioni

article

29.5 : Campo magnetico dovuto a due fili dritti

Sources of Magnetic Fields

2.2K Visualizzazioni

article

29.6 : Forza magnetica tra due correnti parallele

Sources of Magnetic Fields

3.3K Visualizzazioni

article

29.7 : Campo magnetico di un circuito di corrente

Sources of Magnetic Fields

4.1K Visualizzazioni

article

29.8 : Divergenza e arricciatura del campo magnetico

Sources of Magnetic Fields

2.6K Visualizzazioni

article

29.9 : Legge di Ampere

Sources of Magnetic Fields

3.5K Visualizzazioni

article

29.10 : Legge di Ampere: risoluzione dei problemi

Sources of Magnetic Fields

3.4K Visualizzazioni

article

29.11 : Solenoidi

Sources of Magnetic Fields

2.4K Visualizzazioni

article

29.12 : Campo magnetico di un solenoide

Sources of Magnetic Fields

3.5K Visualizzazioni

article

29.13 : Toroidi

Sources of Magnetic Fields

2.7K Visualizzazioni

article

29.15 : Potenziale dovuto a un oggetto magnetizzato

Sources of Magnetic Fields

227 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati