Войдите в систему

In electrostatics, the electric field can be written as the negative gradient of the potential. In magnetostatics, the zero divergence of the magnetic field ensures that the magnetic field can be expressed as the curl of a vector potential. This potential is known as the magnetic vector potential.

Consider an ideal solenoid with n turns per unit length and radius R. If I is the current through the solenoid, the magnetic field inside the solenoid is expressed as the product of vacuum permeability, the number of turns per unit length, and the current. Conversely, the magnetic field outside the solenoid is zero. Considering this, what is the vector potential for an ideal solenoid?

The magnetic flux through the solenoid is given by

Equation1

Since the magnetic field equals the curl of the vector potential, the magnetic flux can be rewritten in terms of the vector potential.

Equation2

Thus, the line integral of the magnetic vector potential equals the surface integral of the magnetic field.

Equation3

Now consider a circular Amperian loop of radius r inside the solenoid. The magnetic flux through this loop is given by

Equation4

Equating the magnetic flux to the line integral of the magnetic vector potential, the expression for the vector potential can be obtained.

Equation5

The vector potential mimics the magnetic field and acts along the circumference.

Теги
Magnetic Vector PotentialElectrostaticsMagnetostaticsMagnetic FieldSolenoidVacuum PermeabilityMagnetic FluxLine IntegralSurface IntegralAmperian LoopVector Potential Expression

Из главы 29:

article

Now Playing

29.14 : Magnetic Vector Potential

Sources of Magnetic Fields

445 Просмотры

article

29.1 : Магнитное поле из-за движущихся зарядов

Sources of Magnetic Fields

8.0K Просмотры

article

29.2 : Закон Био-Савара

Sources of Magnetic Fields

5.5K Просмотры

article

29.3 : Закон Био-Савара: решение проблем

Sources of Magnetic Fields

2.2K Просмотры

article

29.4 : Магнитное поле благодаря тонкому прямому проводу

Sources of Magnetic Fields

4.5K Просмотры

article

29.5 : Магнитное поле благодаря двум прямым проводам

Sources of Magnetic Fields

2.2K Просмотры

article

29.6 : Магнитная сила между двумя параллельными токами

Sources of Magnetic Fields

3.3K Просмотры

article

29.7 : Магнитное поле токовой петли

Sources of Magnetic Fields

4.1K Просмотры

article

29.8 : Дивергенция и закручивание магнитного поля

Sources of Magnetic Fields

2.6K Просмотры

article

29.9 : Закон Ампера

Sources of Magnetic Fields

3.5K Просмотры

article

29.10 : Закон Ампера: решение проблем

Sources of Magnetic Fields

3.4K Просмотры

article

29.11 : Соленоиды

Sources of Magnetic Fields

2.4K Просмотры

article

29.12 : Магнитное поле соленоида

Sources of Magnetic Fields

3.5K Просмотры

article

29.13 : Тороиды

Sources of Magnetic Fields

2.7K Просмотры

article

29.15 : Потенциал из-за намагниченного объекта

Sources of Magnetic Fields

227 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены