Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
* Diese Autoren haben gleichermaßen beigetragen
We describe a technique for concurrently measuring force-regulated single receptor-ligand binding kinetics and real-time imaging of calcium signaling in a single T lymphocyte.
Membranrezeptor-Liganden-Wechselwirkungen vermitteln viele zelluläre Funktionen. Bindungskinetik und nachgeschalteten Signal durch diese molekularen Wechselwirkungen ausgelöst werden wahrscheinlich durch die mechanische Umgebung, in der Bindung und Signalisierung erfolgen betroffen. Eine neuere Studie hat gezeigt, dass eine mechanische Kraft kann die Antigen-Erkennung durch regulieren und Auslösen der T-Zellrezeptor (TCR). Dies wurde durch eine neue Technologie, die wir entwickelt und bezeichnet Fluoreszenz Biomembran Kraftsonde (fBFP), die Einzelmolekülkraftspektroskopie mit Fluoreszenzmikroskopie kombiniert möglich. Mit seinem ultra-soft menschlichen roten Blutkörperchen als sensitive Kraftsensor, ein High-Speed-Kamera und Echtzeit-Bildgebung Tracking-Techniken ist von ~ 1 pN (10 -12 N), ~ 3 nm die fBFP und ~ 0,5 ms in Kraft, räumlicher und zeitlicher Auflösung. Mit der fBFP, kann man genau einzigen Rezeptor-Ligand-Bindungskinetik unter Kraftregelung und gleichzeitig image Bindung ausgelöste intrazelluläre cal messencium Signalisierung auf einer einzelnen lebenden Zellen. Diese neue Technologie kann verwendet werden, um andere Membranrezeptor-Liganden-Wechselwirkung und Signalisierung in anderen Zellen unter mechanischer Regulierung untersuchen.
Zell-zu-Zell und Zell-extrazellulären Matrix (ECM) Haftung wird durch die Bindung zwischen Zelloberflächenrezeptoren, ECM-Proteine und / oder Lipide 1 vermittelt. Bindung erlaubt den Zellen funktionalen Strukturen 1 zu bilden, ebenso wie zu erkennen, zu kommunizieren und zu reagieren, um die Umwelt 1-3. Anders als lösliche Proteine (zB Cytokine und Wachstumsfaktoren), die binden aus einem dreidimensionalen (3D) Fluidphase auf die Zelloberflächenrezeptoren Zelladhäsionsrezeptoren bilden Bindungen mit ihren Liganden über einen schmalen Spalt junctional zu zwei einander gegenüberliegenden Oberflächen, die Molekular beschränken brücken Diffusion in einem zweidimensionalen (2D) Schnittstelle 4-7. Im Gegensatz zu 3D-Kinetik, die üblicherweise durch herkömmliche Bindungstests (zB Oberflächenplasmonresonanz oder SPR) gemessen werden, 2D-Kinetik mit spezialisierten Techniken wie Rasterkraftmikroskopie (AFM) 8-10 quantifiziert werden, Durchflusskammer 11,12, Mikro 13,14, optischePinzette 15 und Biomembran Kraftsonde (BFP) 16-21.
Mehr als lediglich die Bereitstellung physikalische Verknüpfung für die zelluläre Kohäsion, sind Adhäsionsmoleküle, eine Hauptkomponente des Signal-Maschine, damit die Zelle mit ihrer Umgebung zu kommunizieren. Hat eine zunehmende Interesse für das Verständnis, wie Ligand Eingriff Adhäsionsmoleküle initiiert intrazellulären Signalisierung und wie die anfängliche Signal innerhalb der Zelle transduziert. Intuitiv Eigenschaften des Rezeptor-Ligand-Bindung kann die Signale induziert auswirken. Es ist jedoch schwierig, mechanistische Beziehungen zwischen der extrazellulären Interaktion und intrazelluläre Signalereignisse sezieren Verwendung traditioneller Ensemble von biochemischen Assays wegen ihrer vielen Einschränkungen, beispielsweise eine schlechte zeitliche Auflösung und das völlige Fehlen von räumlicher Auflösung. Bestehende Verfahren, die sowohl biophysikalischer (2D-Rezeptor-Liganden-Bindung Kinetik) zu ermöglichen und biochemische (Signalisierung) Beobachtungen über Live-Zellen umfassen Substrate von abstimmbaren Steifigkeit 22, Elastomer Säule Arrays 23 und Strömungsraum / mikrofluidischen Vorrichtungen mit Fluoreszenzfähigkeit 24-26 integriert. Jedoch haben Auslesungen Signalisierung und Rezeptor-Ligandenbindungs separat (häufig durch verschiedene Verfahren) erhalten werden, was es erschwert, zeitlichen und räumlichen Beziehungen der Bindungseigenschaften mit Signalisierungsereignisse zu sezieren.
Konventionelle BFP ist eine ultrasensitive Kraftspektroskopie mit hoher Raum-Zeit-Auflösung 17. Es verwendet eine flexible roten Blutkörperchen (RBC) als Kraftsensor, eine Messung der Einzelmolekül 2D Kinetik, mechanische Eigenschaften und Konformationsänderungen 14,16,19-21,27-29. Ein Fluoreszenz-Bildgebung basiert BFP (fBFP) korreliert die Rezeptor-Ligand-Bindungskinetik mit der Bindung ausgelöste Zellsignalisierung bei Einzelmolekülskala. Mit diesem Setup in situ Zellsignalisierung Tätigkeiten im Zusammenhang mit der Oberfläche mechanical Stimulation wurde in T-Zellen, 27 beobachtet. Die fBFP ist vielseitig und kann für die Untersuchung der Zellhaftung und Signalisierung durch andere Moleküle in anderen Zellen vermittelt werden.
Dieses Protokoll folgt den Richtlinien und wurde von der menschlichen Forschung Ethik-Kommission des Georgia Institute of Technology genehmigt.
1. Menschen RBCs Isolation, Biotinylierung und Osmolarität Adjustment
Hinweis: Schritt 1.1 sollte von einem ausgebildeten Arzt, wie eine Krankenschwester durchgeführt werden, mit einem Institutional Review Board genehmigten Protokoll.
2. Glasperlen Silanisierung
3. Bead Funktionalisierung
4. Zellpräparation
Hinweis: Um die Zellen zu reinigen, folgen Standardzelle Reinigungsprotokolle entsprechend der Art der Zellen, in Verwendung, beispielsweise T-Zellen, 27 oder bestimmte Zelllinien 21,29.
5. Vorbereitung für Mikropipetten und eine Zellkammer
6. BFP Experiment
Abbildung 1: fBFP Baugruppe (A) Eine Übersicht Bild des fBFP Hardware-System.. (B) eine schematische Zeichnung des fBFP Hardwaresystem. (C) Das Doppelnockensystem "DC2" (orange), auf die die Hochgeschwindigkeitskamera (blau) und ein Fluoreszenz-Kamera (weiß) montiert wurden. (D) Der Mikroskoptisch, der einen Experimentierraum und drei Mikromanipulationssysteme anpasst. (E und F) Mikroskopische Aufnahmen von BFP-Einstellung in einer Versuchskammer. (E) Mikropipetten Anordnung, die die Sonde Pipette (links), Zielpipette (oben rechts) und Helfer-Pipette (untere rechts). (F) Probe Perlenplatzierung. Eine Sonde Raupe wurde von einem Helfer Pipette manipuliert und zu einem RBC Spitze, um eine Kraft zu bilden Sonde angebracht ist. Bitte klicken Sie hier, um eine größere Version dieser Figur zu sehen.
Abb. 2: BFP System und seine Testzyklus (A) Video-Aufnahme zeigt eine Kraft-Sonde (links) und ein Ziel-T-Zellen (rechts) durch ihre jeweiligen pipettes.The stationären Kraft-Sonde abgesaugt besteht aus einem geschwollenen RBC und ein angeschlossenes Liganden-tragenden Kügelchen. Die Rezeptor-tragendenT-Zelle (Ziel) mit einem Piezotranslator an der Sonde gegenüberliegende ausgerichtet ist. Die ROI wird grün angezeigt. Der Rand-Tracker ist in einem blauen Linie dargestellt. Das Insert zeigt die Ligand (pMHC, Wulstseite) und Rezeptor (TCR, T-Zellen-Seite) Paar an den beiden gegenüberliegenden Oberflächen in dem in orange markierten Bereich. (B) Das Intensitätsprofil der Wulstrand in (A). Die ROI-Bereich in der x-Richtung wird als x-Achse (in Pixelzahl) und der Lichtintensität (in Grauwert) von Binning 30 Pixel entlang der y-Richtung gemittelt aufgetragen. (C) Die Auslenkung der RBC und die Position des Wulstes und dem Target (T-Zelle) in einem Testzyklus der Kraftspann Assay. Die vertikalen und horizontalen gestrichelten Linien zeigen den Nullkraft-Position des RBC Apex und dem zeitlichen Verlauf auf. Die Linie Rand tracker des RBC Verformung wird in blau in jeder Tafel gezeigt. Die gleichen Schritte werden jedoch weniger Haftung Frequenz angenommenAssay und Temperaturschwankungen Assays (das den Schritt der "dissoziieren" fehlt) (welches die Schritte "clamp" und "dissoziieren" fehlt).
7. Fluoreszenz BFP (fBFP) Experiment
8. Datenanalyse
Die BFP Technik wurde von der Evans Labor 1995 17 voran. Diese picoforce Werkzeug wurde ausgiebig auf Wechselwirkungen von Proteinen auf Oberflächen immobilisiert zu messen, um so zweidimensionale Kinetik von Adhäsionsmolekülen zu analysieren, um die Interaktion mit ihren Liganden 16,19,20 verwendet, 30, um das Molekular Elastizität 21,29 zu messen und zu bestimmen, Protein Konformationsänderungen 21. Für eine fBFP, ein zusätzlicher Satz von Epifluoreszenz bezogene Einr...
Eine erfolgreiche fBFP Experiment bringt einige kritische Überlegungen. Erstens, für die Kraftberechnung zu zuverlässig sein, die Mikropipette, die RBC und die Sonde Perle sollte so nah wie möglich koaxial ausgerichtet werden. Die Projektion der RBC in der Pipette über eine Sonde Pipetten Durchmesser sein, so dass die Reibung zwischen dem RBC und dem Pipetten vernachlässigbar ist. Für eine typische menschliche RBC ist die optimale Pipetten Durchmesser von 2,0-2,4 um, die eine beste Anpassung der Gleichung 1 ...
The authors have nothing to disclose.
Research related to this paper and the development of the fBFP technology in the Zhu lab were supported by NIH grants AI044902, AI077343, AI038282, HL093723, HL091020, GM096187, and TW008753. We thank Evan Evans for inventing this empowering experimental tool, and members of the Evans lab, Andrew Leung, Koji Kinoshita, Wesley Wong, and Ken Halvorsen, for helping us to build the BFP. We also thank other Zhu lab members, Fang Kong, Chenghao Ge and Kaitao Li, for their helps in the instrumentation development.
Name | Company | Catalog Number | Comments |
Sodium Phosphate Monobasic Monohydrate (NaH2PO4 • H2O) | Sigma-Aldrich | S9638 | Phosphate buffer preparation |
Anhy. Sodium Phosphate Dibasic (Na2HPO4) | Sigma-Aldrich | S7907 | Phosphate buffer preparation |
Sodium Carbonate (Na2CO3) | Sigma-Aldrich | S2127 | Carbonate/bicarbonate buffer preparation |
Sodium Bicarbonate (NaHCO3) | Sigma-Aldrich | S5761 | Carbonate/bicarbonate buffer preparation |
Sodium chloride (NaCl) | Sigma-Aldrich | S7653 | N2-5% buffer preparation |
Potassium chloride (KCl) | Sigma-Aldrich | P9541 | N2-5% buffer preparation |
Potassium phosphate monobasic (KH2PO4) | Sigma-Aldrich | P5655 | N2-5% buffer preparation |
Sucrose | Sigma-Aldrich | S0389 | N2-5% buffer preparation |
MAL-PEG3500-NHS | JenKem | A5002-1 | Bead functionalization |
Biotin-PEG3500-NHS | JenKem | A5026-1 | RBC biotinylation |
Nystatin | Sigma-Aldrich | N6261 | RBC osmolarity adjustment |
Ammonium Hydroxide (NH4OH) | Sigma-Aldrich | A-6899 | Glass bead silanization |
Methanol | BDH | 67-56-1 | Glass bead silanization |
30% Hydrogen Peroxide (H2O2) | J. T. Barker | Jan-86 | Glass bead silanization |
Acetic Acid (Glacial) | Sigma-Aldrich | ARK2183 | Glass bead silanization |
3-Mercaptopropyltrimethoxysilane (MPTMS) | Uct Specialties, llc | 4420-74-0 | Glass bead functionalization |
Borosilicate Glass beads | Distrilab Particle Technology | 9002 | Glass bead functionalization |
Streptavidin−Maleimide | Sigma-Aldrich | S9415 | Glass bead functionalization |
BSA | Sigma-Aldrich | A0336 | Ligand functionalizing |
Fura2-AM | Life Technologies | F-1201 | Intracellular calcium fluorescence dye loading |
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D2650 | Intracellular calcium fluorescence dye loading |
Quantibrite PE Beads | BD Biosciences | 340495 | Density quantification |
Flow Cytometer | BD Biosciences | BD LSR II | Density quantification |
Capillary Tube 0.7-1.0 mm x 30 inches | Kimble Chase | 46485-1 | Micropipette making |
Flaming/Brown Micropipette Puller | sutter instrument | P-97 | Micropipette making |
Pipette microforce | Narishige | MF-900 | Micropipette making |
Mineral Oil | Fisher Scientific | BP2629-1 | Chamber assembly |
Microscope Cover Glass | Fisher Scientific | 12-544-G | Chamber assembly |
Micro-injector | World Precision Instruments | MF34G-5 | Chamber assembly |
1 ml syringe | BD | 309602 | chamber assembly |
Micropipette holder | Narishige | HI-7 | Chamber assembly |
Home-designed mechanical parts and adaptors fabrications using CNC machining. | Biophysics Instrument | All parts are customized according to the CAD designs. | BFP system |
Microscope (TiE inverted) | Nikon | MEA53100 | BFP system |
Objective CFI Plan Fluor 40x (NA 0.75, WD 0.72 mm, Spg) | Nikon | MRH00401 | BFP system |
Camera, GE680, 640 x 480, GigE, 1/3" CCD, mono | Graftek Imaging | 02-2020C | BFP system |
Prosilica GC1290 - ICX445, 1/3", C-Mount, 1280 x 960, Mono., CCD, 12 Bit ADC | Graftek Imaging | 02-2185A | BFP system |
Manual submicron probehead with high resolution remote control | Karl Suss | PH400 | BFP system |
Anti-vibration table (5’ x 3’) | TMC | 77049089 | BFP system |
3D manual translational stage | Newport | 462-XYZ-M | |
SolidWorks 3D CAD software | SOLIDWORKS Corp. | Version 2012 SP5 | BFP system |
LabVIEW software | National Instruments | Version 2009 | BFP system, BFP program |
3D piezo translational stage | Physik Instrumente | M-105.3P | BFP system |
Linear piezo accuator | Physik Instrumente | P-753.1CD | BFP system |
Micromanager software | Version 1.4 | fBFP system, fluorescence imaging program | |
Dual Cam (DC-2) | Photometrics | 77054724 | fBFP system |
Dual Cam emission filter (T565LPXR) | Photometrics | 77054725 | fBFP system |
Fluorescence Camera | Hamamatsu | ORCA-R2 C10600-10B | fBFP system |
Plastic paraffin film (Parafilm) | Bemis Company, Inc | PM996 | bottle sealing |
Carbonate/bicarbonate buffer (pH 8.5) | 8.4 g/L sodium carbonate (Na2CO3), 10.6 g/L sodium bicarbonate (NaHCO3) | ||
Phosphate buffer (pH 6.5-6.8) | 27.6 g/L NaPhosphate monobasic (NaH2PO4 • H2O), 28.4 g/L Anhy. NaPhosphate dibasic (Na2HPO4) | ||
N2-5% buffer (pH 7.2) | 20.77 g/L potassium chloride (KCl), 2.38 g/L sodium chloride (NaCl), 0.13 g/L potassium phosphate monobasic (KH2PO4), 0.71 g/L anhy. sodium phosphate dibasic (Na2HPO4), 9.70 g/L sucrose |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten