Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Light microscopy techniques coupled with biochemical assays elucidate the involvement of SNARE-mediated exocytosis in netrin-dependent axon branching. This combination of techniques permits identification of molecular mechanisms controlling axon branching and cell shape change.
During neural development, growing axons extend to multiple synaptic partners by elaborating axonal branches. Axon branching is promoted by extracellular guidance cues like netrin-1 and results in dramatic increases to the surface area of the axonal plasma membrane. Netrin-1-dependent axon branching likely involves temporal and spatial control of plasma membrane expansion, the components of which are supplied through exocytic vesicle fusion. These fusion events are preceded by formation of SNARE complexes, comprising a v-SNARE, such as VAMP2 (vesicle-associated membrane protein 2), and plasma membrane t-SNAREs, syntaxin-1 and SNAP25 (synaptosomal-associated protein 25). Detailed herein isa multi-pronged approach used to examine the role of SNARE mediated exocytosis in axon branching. The strength of the combined approach is data acquisition at a range of spatial and temporal resolutions, spanning from the dynamics of single vesicle fusion events in individual neurons to SNARE complex formation and axon branching in populations of cultured neurons. This protocol takes advantage of established biochemical approaches to assay levels of endogenous SNARE complexes and Total Internal Reflection Fluorescence (TIRF) microscopy of cortical neurons expressing VAMP2 tagged with a pH-sensitive GFP (VAMP2-pHlourin) to identify netrin-1 dependent changes in exocytic activity in individual neurons. To elucidate the timing of netrin-1-dependent branching, time-lapse differential interference contrast (DIC) microscopy of single neurons over the order of hours is utilized. Fixed cell immunofluorescence paired with botulinum neurotoxins that cleave SNARE machinery and block exocytosis demonstrates that netrin-1 dependent axon branching requires SNARE-mediated exocytic activity.
Recent estimates suggest that the human brain contains 1011 neurons with 1014 synaptic connections1, highlighting the importance of axon branching in vivo. Extracellular axon guidance cues such as netrin-1 guide axons to appropriate synaptic partners and stimulate axonal branching, thereby increasing synaptic capacity2-5. Netrin-1-dependent axonal arborization involves substantial plasma membrane expansion6, which we hypothesized requires delivery of additional membrane components via SNARE complex dependent exocytic vesicle fusion7.
Investigating the role of SNARE-mediated exocytosis in netrin-1 dependent axon branching is complicated by several factors. First, the heterogeneity of cortical neurons increases the sample size required to identify significant effects, complicating single cell techniques like imaging. Second, although biochemical techniques permit observation of changes that occur at the population level, they lack the temporal and spatial resolution necessary to localize plasma membrane expansion to the axon in the time frame of axon branching. Lastly, although axon branches form over hours, the cellular changes that contribute to axonal extension may begin within minutes and occur on the order of seconds, thus extending the temporal scope for experimental consideration.
We outline a multi-technique approach that addresses these diverse temporal and spatial scales of exocytosis and axon branching, and thus enhances our understanding of the fundamental cellular mechanisms. Utilizing these approaches provides evidence that supports a critical role for SNARE-mediated exocytosis in axon branching.
Erklärung der Forschungsethik: Alle Versuche Tiere hierin unterliegen den Regeln und Vorschriften des UNC - Ausschusses für Tierpflege und NIH - Standards für die Pflege und Verwendung von Labortieren detailliert beteiligt sind .
1. Herstellung und Beschichtung von Dissociated kortikalen Neuronen
2. SNARE-Komplexbildung Assay
Hinweis: SDS-resistenten SNARE - Komplexe wurden verarbeitet und analysiert , wie ursprünglich 10 beschrieben mit den Änderungen , die nachstehend beschrieben. Für validierte alternative Antikörper gegen die hier verwendet wird, finden Sie im Abschnitt Materialien.
3. Imaging Exozytose-Events über TIRF Mikroskopie
Hinweis: Dieses Protokoll erfordert spezielle Mikroskopie Ausrüstung einschließlich einer Klimakammer Temperatur, Feuchtigkeit und CO 2, ein umgekehrtes TIRF - Mikroskop ausgestattet mit einer epifluoreszenten Beleuchtung, hoher Vergrößerung / hoher numerischer Apertur (NA) TIRF Ziel, eine automatisierte XYZ - Plattform zu halten und ein empfindliches Charge Coupled Device (CCD) -Detektor. Dieses Protokoll verwendet einen vollständig inverses Mikroskop mit einem 100x 1.49NA TIRF Ziel einen festen Zustand 491-nm-Laser und einem Elektronenvervielfachungs CCD (EM-CCD) ausgestattet automatisiert. Alle Geräte werden durch Bildgebung und Lasersteuerungssoftware gesteuert. Vor dem Beginn der Bildgebungsprotokoll Leistung auf der environmental Kammer, Bühne, Lampe, Computer und Kamera.
4. Differentialinterferenzkontrast (DIC) Timelapse Mikroskopie von Axon Branching
Hinweis: Eine vollständige Protokoll und Demonstration für einen allgemeinen Ansatz zur DIC - Bildgebung 12 zur Verfügung steht. Während dieses Protokoll DIC nutzt, andere Durchlichtmikroskopie Methoden für die gleichen Zwecke werden können (: Phasenkontrast zum Beispiel) verwendet.
5. Toxin Manipulations und fixierte Zell Immunofluoreszenz
Verwendung in vitro biochemischen Techniken , um die Menge von SDS-resistenten SNARE - Komplexe in einer Population von Neuronen zu untersuchen. Abbildung 1 zeigt die resultierende Western - Blot nach Beendigung der SDS-resistenten SNARE - Komplex Assay für SNAP-25 sondiert, syntaxin1A und VAMP2.
TIRF - Mikroskopie an der basalen Zellmembran liefert hochauflösende Bilder von einzelnen Exozytose - Fu...
Axon branching is a fundamental neurodevelopmental process and underpins the vast neuroconnectivity of the mammalian nervous system. Understanding the mechanisms involved in localized plasma membrane expansion is integral to our understanding of both normal and pathological neurodevelopment. The use of a multipronged approach incorporating both population level and single cell level methodologies enhances reproducibility and increases spatial and temporal resolution without compromising population level analysis. At the ...
The authors have nothing to disclose.
RO1-GM108970 (SLG) und F31-NS087837 (CW): Diese Arbeit wurde von den National Institutes of Health.
Name | Company | Catalog Number | Comments |
6-well tissue culture treated plates | Olympus Plastics | 25-105 | |
glass coverslips | Fisher scientific | 12-545-81 | 12CIR-1.5; must be nitric acid treated for 24 hours, rinsed in DI water 2x, and dried prior to use. Must be coated with 1 mg/ml Poly-d-lysine and rinsed prior to plating cells. |
Amaxa nucleofection solution | Lonza | VPG-1001 | 100 ml/transfection |
Amaxa Nucleofector/electroporator | Lonza | program O-005 | |
35 mm Glass bottom live cell imaging dishes | Matek Corporation | p356-1.5-14-C | must be coated with 1 mg/ml Poly-d-lysine and rinsed prior to plating cells |
Olympus IX81-ZDC2 inverted microscope | Olympus | ||
Lambda LS xenon lamp | Sutter Instruments Company | ||
Environmental Stage top incubator | Tokai Hit | ||
100x 1.49 NA TIRF objective | Olympus | ||
Andor iXon EM-CCD | Andor | ||
Odyssey Licor Infrared Imaging System | LI-COR | Odyssey CL-X | Used for scanning blots |
Image studio software suite | LI-COR | Used for scanning on the Odyssey Infrared system; Image studio lite used for offline analysis of blots | |
Metamorph for Olympus | Molecular devices, LLC | version 7.7.6.0 | Software used for all imaging and the analysis of DIC timelapse |
CELL TIRF control software | Olympus | Software used to control lasers for TIRF imaging | |
Fiji (Image J) | NIH | ImageJ Version 1.49t | |
60x Plan Apochromat 1.4 NA objective | Olympus | ||
40x 1.4 NA Plan Apochromat objective | Olympus | ||
Neurobasal media | GIBCO | 21103-049 | Base solution for both serum free and trypsin quenching media |
Supplement B27 | GIBCO | 17504-044 | 500 ml/50 ml Serum free media and Trypsin Quenching media |
L-Glutamine | 35050-061 | 1 ml/50 ml Serum free media | |
Bovine serum albumin | Bio Basic Incorporated | 9048-46-8 | 10% solution in 1x PBS for blocking coverslips; 5% solution in TBS-T for blocking nitrocellulose membranes. |
10x trypsin | Sigma | 59427C | |
HEPES | CELLGRO | 25-060-Cl | |
Dulbecco's Phosphate Buffered Saline (DPBS)+ Ca + Mg | Corning | 21-030-cm | |
Fetal bovine serum | Corning/CELLGRO | 35-010-CV | |
Hank's Balanced Salt Solution (HBSS) | Corning/CELLGRO | 20-021-CV | |
NaCl | Fisher scientific | BP358-10 | |
EGTA | Fisher scientific | CAS67-42-5 | |
MgCl2 | Fisher scientific | BP214-500 | |
TRIS HCl | Sigma | T5941-500 | |
TRIS base | Fisher scientific | BP152-5 | |
N-Propyl Gallate | MP Biomedicals | 102747 | |
Glycerol Photometric grade | Acros Organics | 18469-5000 | |
Glycerol (non optics grade) | Fisher scientific | CAS56-81-5 | |
B-mercaptoethonal | Fisher scientific | BP176-100 | |
SDS | Fisher scientific | BP166-500 | |
Distilled Water | GIBCO | 152340-147 | |
Poly-D-Lysine | Sigma | p-7886 | Dissolved in sterile water at 1 mg/ml |
Botulinum A toxin BoNTA | List Biological Laboratories | 128-A | |
Rabbit polyclonal anti human VAMP2 | Cell signaling | 11829 | |
Mouse monoclonal anti rat Syntaxin1A | Santa Cruz Biotechnology | sc-12736 | |
Goat polyclonal anti human SNAP-25 | Santa Cruz Biotechnology | sc-7538 | |
Mouse monoclonal anti human βIII-tubulin | Covance | MMS-435P | |
Alexa Fluor 568 and Alexa Fluor 488 phalloidin, or Alexa Fluor 647 | Invitrogen | ||
LI-COR IR-dye secondary antibodies | LI-COR | P/N 925-32212,P/N 925-68023, P/N 926-68022 | 800 donkey anti-mouse, 680 donkey anti rabbit, 680 donkey anti goat |
0.2 μm pore size nitrocellulose membrane | Biorad | 9004-70-0 | |
Tween-20 | Fisher scientific | BP337-500 | |
Methanol | Fisher scientific | S25426A | |
Bromphenol Blue | Sigma | B5525-5G | |
Sucrose | Fisher scientific | S6-212 | |
Paraformaldehyde | Fisher scientific | O-4042-500 | |
Triton-X100 | Fisher scientific | BP151-500 | |
TEMED | Fisher scientific | BP150-20 | |
40% Bis-Acrylimide | Fisher scientific | BP1408-1 | |
Name | Company | Catalog Number | Comments |
Alternative Validated Antibodies | |||
Mouse Monoclonal Anti-Syntaxin HPC-1 clone | Sigma Aldrich | S0664 | |
Mouse Monoclonal Synaptobrevin 2 (VAMP2) | Synaptic Systems | 104-211 | |
Mouse Monoclonal SNAP25 | Synaptic Systems | 111-011 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten