Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Wir beschreiben eine Schritt- für -Schritt - Methode der direkten Pulpe an Mäusen Zähne für die Bewertung der Pulpa Wundheilung und reparative Dentin Bildung in vivo Capping durchgeführt wird .
Dental pulp is a vital organ of a tooth fully protected by enamel and dentin. When the pulp is exposed due to cariogenic or iatrogenic injuries, it is often capped with biocompatible materials in order to expedite pulpal wound healing. The ultimate goal is to regenerate reparative dentin, a physical barrier that functions as a "biological seal" and protects the underlying pulp tissue. Although this direct pulp-capping procedure has long been used in dentistry, the underlying molecular mechanism of pulpal wound healing and reparative dentin formation is still poorly understood. To induce reparative dentin, pulp capping has been performed experimentally in large animals, but less so in mice, presumably due to their small sizes and the ensuing technical difficulties. Here, we present a detailed, step-by-step method of performing a pulp-capping procedure in mice, including the preparation of a Class-I-like cavity, the placement of pulp-capping materials, and the restoration procedure using dental composite. Our pulp-capping mouse model will be instrumental in investigating the fundamental molecular mechanisms of pulpal wound healing in the context of reparative dentin in vivo by enabling the use of transgenic or knockout mice that are widely available in the research community.
Dental caries are one of the most prevalent oral diseases and the leading cause of surgical interventions to dentitions in almost all individuals1,2. The prognosis of surgical interventions and restorations of a tooth largely depends upon proper pulpal response and successful wound healing. Indeed, dental caries that penetrate deeply through the enamel and dentin frequently lead to the exposure of the underlying pulp tissue that is often "capped" with dental materials, such as calcium hydroxide (Ca(OH)2) or hydraulic calcium-silicate cements (HCSCs), including mineral trioxide aggregates (MTA). The ultimate goal of such a pulp-capping procedure is to expedite pulpal wound healing by regenerating reparative dentin, a physical barrier that functions as a "biological seal" to protect the underlying pulp tissue and to increase the life expectancy of the tooth and the overall oral health. However, the underlying mechanism of pulpal wound healing and reparative dentin formation is not fully understood.
To better understand the mechanisms of pulpal wound healing and reparative dentin formation in vivo, several animals were previously used, including monkeys, dogs, and pigs3-5. Among them, rats are frequently used because they are relatively smaller in sizes compared to the other animals, but their teeth are large enough to perform direct pulp capping without any technical difficulties6-10. These animal models are ideal alternatives to human studies for examining pulpal responses and reparative dentin formation. However, their utilization is limited to observational studies at the cellular level, and they scarcely provide mechanistic insights during reparative dentin formation at the molecular level.
Recent technical advances in genetic engineering provided invaluable and indispensable research tools-mice that harbor a gene that is either overexpressed or deleted-that are instrumental to studying molecular mechanisms of human diseases in vivo. The numbers of different strains of transgenic or knockout mice that are strategically inducible in a cell-specific manner are continually growing in the scientific community. Therefore, examining pulpal wound healing and reparative dentin regeneration in these mice would greatly help to expedite our understanding of these processes at the molecular level. However, the use of mice is significantly dampened, as performing a pulp-capping procedure on a mouse tooth is technically challenging due to its miniature size. Here, we present our reproducible method of performing direct pulp capping in mice for the evaluation of pulpal wound healing and reparative dentin formation in vivo.
Die Mäuse wurden von Jackson Laboratory erworben und in einem keimfreien Vivarium in der UCLA Abteilung für Labortiermedizin (DLAM). Die Experimente wurden aus dem Kanzler Animal Research Committee (ARC # 2016-037) nach den anerkannten Richtlinien des Instituts durchgeführt.
1. Maus Betäubung
2. Zellstoff-Capping Verfahren
3. Post-op Pflege
4. Gewebebeschaffung
5. μCT Scanning
6. Gewebeverarbeitung und Färbung
Hier haben wir gezeigt, die Schritt-für-Schritt-Verfahren Zellstoff zur Durchführung an Mäusen Zähne Capping. Einer der wichtigsten Aspekte der Zellstoff bei Mäusen Capping ist die entsprechende Vorrichtung haben. In dieser Hinsicht mit einem 10fach-facher Vergrößerung des Mikroskops ist von wesentlicher Bedeutung (Abbildung 1A). Um eine Klasse-I-like Vorbereitung in den Zahn zu erstellen, verwendeten wir eine ¼-Runde Grat in einem elektrischen Hochgeschwindigkei...
Derzeit gibt es mehrere verschiedene experimentelle Modelle zur Verfügung , um die in vivo - Effekte von Dentalmaterialien, Gerüste oder Wachstumsfaktoren auf odontogene Differenzierung von Zahnpulpa Stammzellen (DPSCs) 13 zu validieren. Diese Modelle sind mit ektopischen autologe Transplantation von DPSCs in ein Organ, wie die Nierenkapsel oder subkutane Transplantation von DPSCs in immunsupprimierten Mäusen mit Gerüsten 14,15. Jedoch sind diese Verfahren begrenzt, daß ihre Wirkung a...
The authors have nothing to disclose.
Diese Studie wurde von R01DE023348 (RHK) von NIDCR / NIH und der Fakultät Research Grant (RHK) vom Rat für Forschung des Akademischen Senats der Los Angeles Abteilung der Universität von Kalifornien unterstützt.
Name | Company | Catalog Number | Comments |
BM-LED stereo microscope | MEIJI Techno | Microscope | |
Optima MCX-LED | Bien Air Dental | 1700588-001 | Electic motor engine |
isoflurane | Henry schein animal health | NDC 11695-0500-2 | |
1/4 round bur | Brasseler | 001092T0 | |
Endodontic K-file | Roydent | 98947 | |
ProRoot MTA | Dentsply | PROROOT5W | MTA |
Paper point | Henry schein | 100-3941 | |
Ultra-Etch | Ultradent product Inc. | Phosphoric acid etchant | |
OptiBond SoloPlus | Kerr | 29669 | Adhesives |
Coltolux LED | Coltene/whaledent Inc. | C7970100115 | Curing light unit |
Characterization tint | Bisco | T-14012 | Flowable composite |
Skyscan | Breuker | 1275 | uCT scanner |
Microm | Thermo | HM355S | Microtome |
Hematoxyline-1 | Thermo Scientific | 7221 | |
Eosin-Y | Thermo Scientific | 7111 | |
Cytoseal 60 | Thermo Scientific | 8310-16 | Mounting solution |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten