Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Hier präsentieren wir Ihnen ein Protokoll für die Synthese und Elektrochemische Prüfung Übergangsmetall einzelner Atome als aktive Zentren für selektive Kohlendioxid-Reduktion zu Kohlenmonoxid in wässrigen Lösungen in Graphen stellen koordiniert.
Dieses Protokoll stellt die Synthese-Methode des Katalysators Ni einzelnes Atom, sowohl die Elektrochemische Prüfung ihrer katalytischen Aktivität und Selektivität in wässrigen CO2 -Reduktion. Anders als bei traditionellen Metall-Nanokristalle, beinhaltet die Synthese der einzelnen metallatomen Matrixmaterial, die die einzelne Atome zu beschränken und Aggregation hindern kann. Wir berichten über eine Elektrospinnen und thermische Methode um Ni vorzubereiten, einzelne Atome verteilt und koordiniert in einem Graphen-Shell als aktive Zentren für CO2 -Reduktion Co, Glühen. Während der Synthese spielen N Dotierstoffe eine entscheidende Rolle bei der Schaffung von Graphen stellen Ni Atome auffangen. Aberration korrigiert Scan Transmissions-Elektronenmikroskopie und dreidimensionale Atom Probe Tomography wurden eingesetzt, um den einzelnen Ni atomaren Standorten in Graphen stellen zu identifizieren. Detaillierten Aufbau der elektrochemische CO2 Reduktion Apparat mit einem Online-Gaschromatographie gekoppelt wird auch demonstriert. Im Vergleich zu metallischen Ni, Ni einzelatom Katalysator weisen deutlich verbesserte CO2 -Reduktion und H2 Evolution Seite Reaktion unterdrückt.
Konvertieren von CO2 in Chemikalien oder Kraftstoffe mit sauberem Strom gewinnt zunehmend an Bedeutung als ein möglicher Weg zur Verhinderung weiterer CO2 Emissionen1,2,3,4, 5,6. Jedoch mit dieser praktischen Anwendung derzeit durch die geringe Aktivität und Selektivität der CO2 Reduktionsreaktion (CO2RR) durch die hohe kinetischen Barrieren und die Konkurrenz mit Wasserstoff Evolution Reaktion (HER) in wässrigen herausgefordert Medien. Die meisten traditionellen Übergangsmetall-Katalysators, wie Fe, Co, Ni, weisen niedrige CO2RR Selektivität durch ihre hervorragende HER Aktivitäten7,8. Effektiv ihre Materialeigenschaften ändern die Reaktionswege auf diese Übergangsmetallkatalysatoren tuning wird kritisch ihre CO2RR Selektivität zu verbessern. Unter verschiedenen Methoden zum Ändern der elektronischen Eigenschaften von Katalysatoren zieht die Metallatome in einem einzelatom-Morphologie Dispergieren intensive Aufmerksamkeit vor kurzem wegen ihrer dramatisch veränderten katalytische Verhalten im Vergleich zu ihrer Masse Gegenstück 9 , 10 , 11. jedoch aufgrund der hohen Beweglichkeit der ungebundene Atome, es ist ziemlich schwierig, einzelne Metallatome ohne die Anwesenheit von unterstützenden Materialien zu erhalten. Deshalb Host Matrixmaterial mit defekten erstellt beschränken und mit Übergangsmetall Atome koordinieren muss. Dies könnte eröffnen Ihnen neue Möglichkeiten auf: (1) die elektronischen Eigenschaften der Übergangsmetalle als CO2RR aktive Zentren und 2 Stimmen) gleichzeitig pflegen relativ einfachen atomaren Koordination für grundlegender Mechanismus Studien. Diese Übergangsmetall-Atome gefangen in einer beengten Umgebung darüber hinaus können nicht leicht während der Katalyse, verschoben werden um die Keimbildung oder Rekonstruktionen von Oberflächenatomen beobachtet in vielen Fällen12,13 verhindert ,14.
Zweidimensionalen Ebenen Graphen ist von besonderem Interesse als Host für einzelne Metallatome aufgrund ihrer hohen elektronenleitfähigkeit, chemische Beständigkeit und Trägheit, CO2 -Reduktion und ihre katalytische Reaktionen. Noch wichtiger ist, kannte man Fe, Co und Ni Metalle zu den Kohlenstoff Graphitisierung Prozess auf ihrer Oberfläche15katalysieren können. Kurz gesagt, würde diese Übergangsmetalle mit Kohlenstoff während der Hochtemperatur-thermische glühprozess Legierung. Sinkt die Temperatur, Carbon beginnt, Legierungsmetall phasenverschoben auszufällen und Form Graphene Schichten auf der Oberfläche des Übergangsmetall katalysiert wird. Während dieses Prozesses wäre mit Graphen-Fehler generiert, einzelne Metallatome in Graphen Mängel als die aktiven Zentren für CO2RR16,17,18,19gefangen. Hier berichten wir über dieses ausführliche Protokoll Absicht zu helfen, neue Praktiker auf dem Gebiet der einzelnen Atom Katalyse, sowie eine explizite Demonstration Online-Co2 -Reduktion-Produkt-Analyse zur Verfügung zu stellen. Weitere Informationen finden in unserer kürzlich veröffentlichten Artikel19 und eine Reihe von damit verbundenen Arbeiten20,21,22,23.
1. Vorbereitung der Ni Single Atom Katalysator (NiN-GS)
2. elektrochemische CO2 -Reduktion-Messungen
Rasterelektronenmikroskopie (SEM), Scan-Transmissions-Elektronenmikroskopie (STEM) und Energie-energiedispersiver Röntgenspektroskopie (EDX) sind Zuordnung Bilder zur Morphologie Charakterisierung von NiN-GS in Abbildung 1 dargestellt. Dreidimensionale Atom Sonde Tomographie (3D-APT) Ergebnisse sind für die direkte Identifizierung der einzelnen Ni Websites Verteilung als auch ihre benachbarten chemischen Umgebung in Abbildung 2...
In den oben beschriebenen Elektrospinnen Prozess, zwei wichtige Schritte in materiellen Syntheseverfahren beachten: (1) Heizung die DMF-Mischung (Schritt 1.1.2), und (2) die Pumpe Rate einstellen (Schritt 1.2.2) um die Spinnen möglichst übereinstimmen. SEM Bild in Abbildung 1A zeigt die erhaltenen Kohlenstoff Nanofasern miteinander (~ 200 nm im Durchmesser). Sie wurden durch Kugel Fräsen für Charakterisierungen wie in Abbildung 1 bin kleine Stücke gebrochen...
Diese Arbeit wurde von Rowland Fellows Program an der Rowland Institute der Harvard-Universität unterstützt. Diese Arbeit erfolgte teilweise in der Mitte für Nanoscale Systems (ZNS), Mitglied der nationalen Nanotechnologie Infrastrukturnetz, die von der National Science Foundation unter Award unterstützt wird keine. ECS-0335765. Das ZNS ist Teil der Harvard University.
Name | Company | Catalog Number | Comments |
syringe pump | KD Scientific | KDS-100 | |
tube furnance | Lindberg/Blue M | TF55035A-1 | |
ball miller | SPEX SamplePrep | 5100 | |
electrochemical work station | BioLogic | VMP3 | |
pH meter | Orion | 320 PerpHecT | 2 points calibration before use |
gas chromatograph | Shimadzu | GC-2014 | a combined seperation system consisting of molecular sieve 5A, Hayesep Q, Hayesep T, and Hayesep N |
mass flow controller | Alicat Scientific | MC-50SCCM-D/5M | |
ultrapure water system | Millipore | Synergy | |
vacuum desiccator | PolyLab | 55205 | |
polyacrylonitrile | Sigma-Aldrich | 181315 | Mw=150,000 |
polypyrrolidone | Sigma-Aldrich | 437190 | Mw=1,300,000 |
Ni(NO3)26H2O | Sigma-Aldrich | 244074 | |
dicyandiamide | Sigma-Aldrich | D76609 | |
dimethylformamide | Sigma-Aldrich | 227056 | |
carbon fiber paper | AvCarb | MGL370 | |
Nafion 117 membrane | Fuel Cell Store | 117 | used as proton exchange membrane in H-cell |
KHCO3 | Sigma-Aldrich | 431583 | further purified by electrolysis |
platinum foil | Beantown Chemical | 126580 | |
saturated calomel electrode | CH Instruments | CHI150 | |
glassy carbon electrode | HTW GmbH | SIGRADUR | 1 cm × 2 cm |
wax | Apiezon | W-W100 | |
Nafion 117 solution | Sigma-Aldrich | 70160 | used as ionomer in catalyst ink preparation |
forming gas | Airgas | UHP | 5% H2 balanced with Ar |
carbon dioxide | Airgas | LaserPlus | |
sandard gas | Airgas | customized | 500 ppm CO, 500 ppm CH4, 1000 ppm H2 balanced with Ar |
sandard gas | Air Liquide | customized | 100 ppm H2, 100 ppm CO and other alkanes balanced with Ar |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten